Founder and publisher – Russian Scientific Research Institute of Land Improvement Problems
Land Reclamation and Hydraulic Engineering Melioraciâ i gidrotehnika
ISSN 2712-9357
RUS / ENG

DETERMINING THE QUANTITATIVE PARAMETERS OF THE HYDRAULIC MODEL OF COMBINED IRRIGATION SYSTEMS BASED ON THE COMPUTER CALCULATIONS ALGORITHMIZATION 

Annotation

Purpose: development of a computer algorithm for a quantitative assessment of the hydraulic parameters of an irrigation and drainage system with the possibility of integrating different irrigation methods. 

Materials and methods. The design of structures for combined irrigation is based on hydraulic calculation. A feature of such systems is the ability to change irrigation methods, which is associated with a significant change in hydraulic parameters and the complication of hydraulic design of structures. Automation of hydraulic calculations based on a universal computer algorithm is the most acceptable way to solve the problem and the basis for designing combined irrigation systems. 

Results. A feature of the proposed algorithm for determining the quantitative parameters of the combined irrigation system is the use of a step-by-step approach followed by the formation of a generalized hydraulic screenshot of the entire structure. A screenshot of hydraulic parameters here means a quantitative assessment of hydraulic indicators for all nodal points of a structure, implemented by a calculation method for given, stationary modes of system operation. A set of this kind of static screenshots allows you to evaluate the process in dynamics, as well as to carry out comparative assessments of hydraulic parameters under different operating modes of the combined irrigation system. The algorithm offers an original way to identify objects based on the use of a linear coordinate system. The method makes it possible to organize an enumeration of the structural elements of the system and a step-by-step calculation of hydraulic parameters from the inlet section of the design segment to any given nodal point. 

Conclusions. The calculation results according to the proposed algorithm make it possible to form a specially organized data array, which is a set of symbolic-numeric values that determine the pressure level and water flow rate and identify them with the nodal point of the system. 

doi: 10.31774/2222-1816-2021-11-1-129-146

Keywords

combined irrigation, hydraulic model, automation of calculations, object identification system, algorithm 

For quoting

Lytov M. N. Determining the quantitative parameters of the hydraulic model of combined irrigation systems based on the computer calculations algorithmization // Scientific Journal of Russian Scientific Research Institute of Land Improvement Problems [Electronic resource]. 2021. Vol. 11, no. 1. P. 129–146. URL: http:www.rosniipm-sm.ru/en/article?n=1182 (date of access: 16.02.2021). doi: 10.31774/2222-1816-2021-11-1-129-146.

Authors

Lytov Mikhail Nikolayevich

Degree: Candidate of Agricultural Sciences

Title: Associate Professor

Position: Leading Researcher

Affiliation: All-Russian Research Institute of Hydraulic Engineering and Land Reclamation named after A. N. Kostyakov (Volgograd branch), Volgograd, Russian Federation

Affiliation address: st. Timiryazeva, 9, Volgograd, Russian Federation, 400002

E-mail: LytovMN@yandex.ru

Bibliography

1 Zhovtonog O.I., Filippenko L.A., Polishchuk V.V., Salyuk A.F., Khomenko A.V., 2018. Zakonomernosti energomassoobmena v srede “pochva – rastenie – atmosfera” v sovremennykh klimaticheskikh i khozyaystvennykh usloviyakh ispol'zovaniya orosheniya [Patterns of energy-mass exchange in soil-plant-atmosphere environment under current climatic and economic conditions for irrigation]. Melioratsiya i vodnoe khozyaystvo [Irrigation and Water Management], no. 2(108), pp. 19-28, DOI: 10.31073/mivg20180108-132. (In Russian).

2 Satunkin I.V., 2020. Effektivnost' perspektivnykh sposobov i tekhniki poliva kartofelya pri razlichnykh rezhimakh orosheniya na Yuzhnom Urale [Efficiency of promising methods and techniques for watering potatoes under various irrigation regimes in the South Urals]. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta [Bulletin of Orenburg State Agrarian University], no. 2(82), pp. 92-97. (In Russian).

3 Mirgol B., Nazari M., Eteghadipour M., 2020. Modelling climate change impact on irrigation water requirement and yield of winter wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and fodder maize (Zea mays L.) in the semi-arid Qazvin plateau, Iran. Agriculture, vol. 10, № 3, p. 60, DOI: 10.3390/agriculture10030060.

4 Bristiel P., Volaire F., Roumet C., Violle C., 2019. Сoping with drought: root trait variability within the perennial grass Dactylis glomerata captures a trade-off between dehydration avoidance and dehydration tolerance. Plant and Soil, vol. 434, no. 1-2, pp. 327-342, DOI: 10.1007/s11104-018-3854-8.

5 Krishna Rao B., Bhatnagar P.R., Kamble T., Kurothe R.S., Mishra P.K., Sharma R., Kumar A., Pande V.C., 2019. Surge-flow alternate furrow irrigation for enhancing water productivity in semiarid regions. Indian Journal of Agricultural Sciences, vol. 89, no. 12, pp. 1999-2002.

6 Lytov M.N., 2019. Agrofitotsenoz kak ob"ekt upravleniya gidrotermicheskim rezhimom v usloviyakh orosheniya [Agrophytocenosis as an object of hydrothermal regime control under irrigation conditions]. Puti povysheniya effektivnosti oroshaemogo zemledeliya [Ways of Increasing the Efficiency of Irrigated Agriculture], no. 4(76), pp. 9-14. (In Russian).

7 Borodychev V.V., Lytov M.N., 2019. Tekhniko-tekhnologicheskiye osnovy regulirovaniya gidrotermicheskogo rezhima agrofitotsenoza v usloviyakh orosheniya [Technical and technological bases for regulating the hydrothermal agrophytocenosis regime under irrigation conditions]. Nauchnaya zhizn' [Scientific Life], vol. 14, № 10(98), pp. 1484-1495, DOI: 10.35679/1991-9476-2019-14-10-1484-1495. (In Russian).

8 Piri H., Naserin A., 2020. Effect of different levels of water, applied nitrogen and irrigation methods on yield, yield components and IWUE of onion. Scientia Horticulturae, vol. 268, no. 109361, DOI: 10.1016/j.scienta.2020.109361.

9 Shahrokhnia M.H., Sepaskhah A.R., 2017. Safflower model for simulation of growth and yield under various irrigation strategies, planting methods and nitrogen fertilization. International Journal of Plant Production, vol. 11, no. 1, pp. 167-192, DOI: 10.22069/IJPP.2017.3316.

10 Mattar M.A., El-Saadawy M.A., Helmy M.A., Sorour H.M., 2017. Field assessment of surge and continuous furrow irrigation methods in relation to tillage systems. International Agrophysics (Lublin), vol. 31, no. 2, pp. 219-230, DOI: 10.1515/intag-2016-0039.

11 Borodychev V.V., Khrabrov M.Yu., Gubin V.K., Kolesova N.G., Akimova T.S., 2016. Sistema kombinirovannogo orosheniya [Combined irrigation system]. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional'noe obrazovanie [Bulletin of Nizhnevolzhsky Agricultural University Complex: Science and Higher Professional Education], no. 1(41), pp. 201-210. (In Russian).

12 Dubenok N.N., Mayer A.V., Gurenko V.M., Borodychev S.V., 2019. Sistema kombinirovannogo orosheniya i effektivnost' proizvodstva ovoshchnoy produktsii [Combined irrigation system and efficiency of vegetable production]. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional'noe obrazovanie [Bulletin of Nizhnevolzhsky Agricultural University Complex: Science and Higher Professional Education], no. 2(54), pp. 253-265, DOI: 10.32786/2071-9485-2019-02-31. (In Russian).

13 Melikhova E.V., Borodychev V.V., Rogachev A.F., 2018. Funktsional'no-morfologicheskiy analiz i sovershenstvovanie tekhnicheskikh sredstv kombinirovannogo orosheniya [Functional-morphological analysis and improvement of technical means of combined irrigation]. Melioratsiya i vodnoe khozyaystvo [Irrigation and Water Economy], no. 4, pp. 30-36. (In Russian).

14 Mikhailov G.I., 2014. Postroyenie prodol'nykh profiley i raschet vodotokov meliorativnoy sistemy: metod. ukazaniya [Construction of longitudinal profiles and calculation of watercourses of the reclamation system: method. instructions]. Gorki, BGSKhA Publ., 28 p. (In Russian).

15 Schedrin V.N., Kolganov A.V., Vasiliev S.M., Churaev A.A., 2013. Orositel'nye sistemy Rossii: ot pokoleniya k pokoleniyu [Irrigation Systems in Russia: From Generation to Generation]. In 2 parts. Pt. 2. Novocherkassk, Helikon Publ., 307 p. (In Russian).

16 Egorova S.V., 2010. Melioratsiya zemel' [Land Reclamation]. Bryansk, Bryansk State Engineer Technological Academy, 169 p. (In Russian).

17 Idelchik I.E., 1992. Spravochnik po gidravlicheskim soprotivleniyam [Handbook of Hydraulic Resistance]. Moscow, Mechanical Engineering Publ., 672 p. (In Russian).

Download