GULLY MODELING FOR FOREST RECLAMATION PURPOSES
- Land Reclamation, Recultivation, and Land Protection
Purpose: to obtain calculated dependencies for determining free and banked seepage from irrigation canals.
Materials and methods: during the research, methods of the theory of filtration from unlined and lined canals of irrigation and drainage systems were used.
Results. Free seepage from the canals with steady flow shows significant water losses, reaching 30 % of discharge. As a result, the canal efficiency decreases, thus contributing to the flooding of the canal areas, the subsequent soil salinization, waterlogging and their gradual withdrawal from agriculture. Free steady seepage from canals will be observed in the absence of impermeable water-resistant depth layers or when the groundwater level occurs at a depth of more than 20–25 m from the earth's surface. In this regard, to determine the seepage discharge with free seepage, the calculated dependences of N. N. Pavlovsky, V. V. Vedernikov, A. N. Kostyakov, S. F. Averyanov and Yu. M. Kosichenko are recommended. In the case when banked-up seepage occurs during steady motion, the method of filtration resistance and the formulas of S. F. Averyanov, N. N. Verigin, A. Ya. Oleinik, taking into account the unsteady seepage process, with differential equation of unsteady flow motion of the Fourier type may be used.
Conclusions. The solutions obtained of seepage problems under steady motion made it possible to find calculated dependencies and calculation methods for free and banked-up seepage from irrigation canals. A classification of seepage losses from irrigation canals for free flow conditions has been developed.
doi: 10.31774/2712-9357-2022-12-3-227-243
seepage, irrigation canal, steady flow, water losses, free and banked-up seepage, unlined canal
Baev O. A. Calculations of steady free seepage from unlined canals. Land Reclamation and Hydraulic Engineering. 2022;12(3):227–243. (In Russ.). https://doi.org/10.31774/2712-9357-2022-12-3-227-243.
1. Kosichenko Yu.M., Baev O.A., 2020. Gidravlicheskaya effektivnost' orositel'nykh kanalov pri ekspluatatsii [Hydraulic efficiency of irrigation canals in the course of operation]. Vestnik MGSU [Bulletin MGSU], vol. 15, no. 8, pp. 1147-1162, DOI: 10.22227/1997-0935.2020.8.1147-1162. (In Russian).
2. Rukavishnikov A.A., Abdrazakov F.K., 2019. Isklyuchenie neproizvoditel'nykh po-ter' vodnykh resursov iz orositel'noy seti za schet ispol'zovaniya innovatsionnykh ob-litsovochnykh materialov [Elimination of unproductive losses of water resources from the irrigation network through the use of innovative facing materials]. Agrarnyy nauchnyy zhurnal [Agrarian Scientific Journal], no. 10, pp. 91-94, https:doi.org/10.28983/asj.y2019i10pp91-94. (In Russian).
3. Khanov N.V., Eremeev A.V., 2015. Obzor primeneniya sovremennykh geosinteticheskikh materialov v gidrotekhnicheskom stroitel'stve [Review of the use of modern geosynthetic materials in hydraulic engineering construction]. Mezhdunarodnaya nauchnaya konferentsiya molodykh uchenykh i spetsialistov, posvyashchennaya 150-letiyu RGAU-MSKHA imeni K. A. Timiryazeva: sbornik statey [International Scientific Conference of Young Scientists and Specialists Dedicated to the 150th Anniversary of the RGAU-MSHA named after K.A. Timiryazev: Proc.]. Moscow, RGAU-MSHA named after K.A. Timiryazev, pp. 336-339. (In Russian).
4. Bandurin M.A., Volosukhin V.A., Yurchenko I.F., Vanzha V.V., Mikheev A.V., 2018. The efficiency of impervious protection of hydraulic structures of irrigation systems. Advances in Engineering Research, vol. 151, pp. 56-61, https:doi.org/10.2991/agrosmart-18.2018.11.
5. Kosichenko Yu.M., Baev O.A., 2021. Osobennosti gidravlicheskikh i fil'tratsion-nykh raschetov osushitel'no-orositel'nykh sistem [Features of hydraulic and filtration calculations of drainage and irrigation systems]. Prirodoobustrojstvo [Environmental Engineering], no. 4, pp. 90-98, DOI: 10.26897/1997-6011-2021-4-90-98. (In Russian).
6. Kosichenko Yu.M., Baev O.A., 2021. Selection of an effective seepage-control lining for canals made of traditional and geosynthetic materials. Power Technology and Engineering, vol. 54, no. 6, pp. 819-824, https:doi.org/10.1007/s10749-021-01293-4.
7. Kozlov K.D., Khanov N.V., Fartukov V.A., Kozlov D.V., 2018. Issledovaniya gidrodinamicheskogo vozdeystviya vodnogo potoka na zashchitnoe pokrytie iz geosinteticheskogo materiala [Research of hydrodynamic impact of the water flow on the geosynthetic protective coating]. Stroitel'stvo: nauka i obrazovanie [Construction: Science and Education], vol. 8, no. 1(27), pp. 108-117, DOI: 10.22227/2305-5502.2018.1.9. (In Russian).
8. Garbuz A.Yu., 2020. [Experimental research of water permeability of local damage of canal concrete lining]. Ekologiya i vodnoe khozyaystvo, no. 1(4), pp. 76-88, available: http:www.rosniipm-sm1.ru/article?n=54 [accessed 01.03.2022], DOI: 10.31774/2658-7890-2020-1-76-88. (In Russian).
9. Balamirzoev A.G., Ivanov V.V., 2018. Chislennoe modelirovanie osesimmetrichnykh techeniy vyazkoy neszhimaemoy zhidkosti [Numerical simulation of axisymmetric flows of a viscous incompressible fluid]. Mezhdunarodnyy zhurnal prikladnykh i fundamental'nykh issledovaniy [International Journal of Applied and Fundamental Research], no. 11(1), pp. 15-20. (In Russian).
10. Kosichenko Yu.M., 2020. Universal'naya metodika rascheta vodopronitsaemosti protivofil'tratsionnykh oblitsovok s polimernymi geomembranami [Universal method for calculating water permeability of antifiltration linings with polymeric geomembranes]. Prirodoobustrojstvo [Environmental Engineering], no. 4, pp. 6-13, DOI: 10.26897/1997-6011/2020-4-6-13. (In Russian).
11. Kostyakov A.N., 1951. Osnovy melioratsiy [Fundamentals of Land Reclamation]. Moscow, Selkhozgiz Publ., 750 p. (In Russian).
12. Pavlovsky N.N., 1956. Teoriya dvizheniya gruntovykh vod pod gidrotekhnicheskimi sooruzheniyami i ee osnovnye prilozheniya. Sobr. soch. [The Theory of Ground Water Movement under Hydraulic Structures and Its Main Applications. Collected edition], vol. 2. Moscow, Leningrad, 771 p. (In Russian).
13. Rizenkampf G.K., 1925. Osnovy irrigatsii [Fundamentals of Irrigation], vol. 1. Leningrad, 604 p. (In Russian).
14. Vedernikov V.V., 1939. Teoriya fil'tratsii i ee primenenie v oblasti irrigatsii i drenazha [Filtration Theory and its Application in the Field of Irrigation and Drainage]. Moscow, Leningrad, Gosstroyizdat Publ., 248 p. (In Russian).
15. Kosichenko Yu.M., 1992. Gidravlika meliorativnykh kanalov [Hydraulics of Reclamation Canals]. Novocherkassk Reclamation Engineering Institute, Novocherkassk, 175 p. (In Russian).
16. Verigin N.H., 1949. Fil'tratsiya vody iz orositelya irrigatsionnoy sistemy [Water filtration from irrigation system sprinkler]. Doklady AN SSSR [Reports of the Academy of Sciences of the USSR], vol. 66, no. 4, pp. 589-592. (In Russian).
17. Averyanov S.F., 1982. Fil'tratsiya iz kanalov i ee vliyanie na rezhim gruntovykh vod [Infiltration from the Channels and Its Impact on the Groundwater Regime]. Moscow, Kolos Publ., 237 p. (In Russian).
18. Oleinik A.Ya., 1981. Geogidrodinamika drenazha [Geohydrodynamics of Drainage]. Kyiv, Naukova Dumka Publ., 283 p. (In Russian).