Founder and publisher – Russian Scientific Research Institute of Land Improvement Problems
Land Reclamation and Hydraulic Engineering Melioraciâ i gidrotehnika
ISSN 2712-9357
RUS / ENG

USING THE FLOW PATH OF PRESSURE TURBINES TO DISCHARGE IDLE FLOWS

Annotation

Purpose: to consider possible options for discharging idle flows through the flow path of the turbine of a medium- or high-head hydroelectric power plant equipped with reaction turbines. 

Materials and methods. A hydroelectric power plant with a pressure of about 50 m, equipped with a radial-axial turbine, is adopted as the initial data. The turbine capacity in the nominal mode is about 30 MW. According to the working hypothesis, a counter-vortex damper of the flow kinetic energy is installed in the turbine runner chamber (the turbine runner is dismantled), which is designed to dampen excess energy in the area of the draft tube cone and bend, ensuring the hydraulic regime of the water flow into the lower pool is the same as during operation of the standard turbine runner. 

Results. A hydraulic calculation of two swirling flows, which create a standard guide vane and an additional fixed grid of blades installed coaxially to the guide vane in the turbine runner chamber, was performed. Both grids form a counter-vortex flow in the draft tube, providing energy dissipation due to the water viscous forces. In the course of the research, the calculated geometric characteristics of the swirler grids providing swirl were obtained: the angles of the inlet and outlet edges of the blades and their radii. When installing a counter-vortex damper in the runner chamber of the hydraulic turbine, the discharge flow at a pressure of H = 49.35 m will be Q = 63.3 m³/s, while the counter-vortex damper provides power dissipation of NКГ = 29688 kW. The absence of a counter-vortex damper leads to the fact that the pressure pulsations are 32 % of the operating head. 

Conclusions. The calculations show that passing a high energy intensity flow through the flow path of the turbine tract is possible. This is achieved by installing a counter-vortex damper of the kinetic energy of the flow in the runner chamber. 

doi: 10.31774/2712-9357-2025-15-2-380-400

Keywords

hydroelectric power plant, spillway, hydraulic turbine unit, swirl flow, counter-vortex flow, circular grating of fixed blades, hydraulic turbine draft tube

For quoting

Orekhov G. V., Sklyadnev M. K. Using the flow path of pressure turbines to discharge idle flows. Land Reclamation and Hydraulic Engineering. 2025;15(2):380–400. (In Russ.). https://doi.org/10.31774/2712-9357-2025-15-2-380-400.

Authors

G. V. Orehov – Doctor of Technical Sciences, Professor of the Department of Hydraulics and Hydraulic Engineering, Professor, Moscow State University of Civil Engineering (National Research University), Moscow, Russian Federation, orehov_genrih@mail.ru, AuthorID: 569092, ORCID: 0000-0002-6900-2704;

M. K. Sklyadnev – Teacher of the Department of Hydraulics and Hydraulic Engineering, Moscow State University of Civil Engineering (National Research University), Moscow, Russian Federation, m.kons20@mail.ru, AuthorID: 1139257, ORCID: 0000-0003-4188-268X.

Bibliography

1. Borovoy A.A., Ginzburg M.B., 1972. Proektirovanie i stroitel'stvo bol'shikh plotin: po materialam IX Mezhdunar. kongressa po bol'shim plotinam. Vyp. 2: Postoyannye i vremennye vodosbrosnye sooruzheniya [Design and Construction of Design and Construction of High Dams: From Papers of Tenth International Congress on Large Dams: Based on the Proceed. of the IX International Congress on Large Dams. Part 2: Permanent and Temporary Spillway Structures]. Moscow, Energiya Publ., 155 p. (In Russian).

2. Rubinstein G.L., Rudakova M.D., 1980. Energetika i elektrifikatsiya. Obzornaya informatsiya. Seriya «Gidroelektrostantsii». Vyp. 1: Propusk stroitel'nykh raskhodov cherez nedostroennye betonnye sooruzheniya gidrouzlov [Power Engineering and Electrification. Review Information. Series “Hydroelectric Power Plants”. Part 1: Passing Construction Flows Through Unfinished Concrete Structures of Waterworks]. Moscow, Informenergo Publ., 85 p. (In Russian). 

3. Volshanik V.V., Zuikov A.L., Mordasov A.P., 1990. Zakruchennye potoki v gidro-tekhnicheskikh sooruzheniyakh [Swirling Flows in Hydraulic Structures]. Moscow, Energoatomizdat Publ., 280 p. EDN: RFDQCL. (In Russian).

4. Ponomarev N.K., Shchesnyak L.E., 2018. Sopryazhenie vikhrevogo vodosbrosa s nizhnim b'yefom putem otbrosa strui [The pairing of a swirling spillway to the lower pool through the thrown jets]. Stroitel'naya mekhanika inzhenernykh konstruktsiy i sooruzheniy [Structural Mechanics of Engineering Constructions and Buildings], vol. 14, no. 2, pp. 142-153, DOI: 10.22363/1815-5235-2018-14-2-142-153, EDN: XQIAZF. (In Russian).

5. Orekhov G., 2019. Cavitation in swirling flows of hydraulic spillways. E3S Web of Conferences: 2018 Topical Problems of Architecture, Civil Engineering and Environmental Economics (TPACEE 2018), Moscow, 3–5 Dec. 2018 year, vol. 91, article number: 07022, DOI: 10.1051/e3sconf/20199107022, EDN: MYGDRX.

6. Guryev A.P., Khanov N.V., Abidov M.M., 2021. Rekomenduyemye usloviya raboty vikhrevykh vodosbrosov [Recommended conditions for the operation of vortex spillways]. Gidrotekhnicheskoe stroitel'stvo [Hydrotechnical Construction], no. 3, pp. 15-21, EDN: HBBICQ. (In Russian). 

7. Semenov G.A., Smirnova A.Yu., Dekterev A.A., Minakov A.V., Sentyabov A.V., 2013. Chislennoe issledovanie konstruktivnykh sposobov podavleniya nizkochastotnykh pul'satsiy davleniya v otsasyvayushchey trube gidroturbiny [Numerical study of design methods for suppressing low-frequency pressure pulsations in the suction pipe of a hydraulic turbine]. Trudy Akademenergo [Transactions of Akademenergo], no. 3, pp. 26-40, EDN: REAMRT. (In Russian).

8. Broucek M., Satrapa L., Kralik M., Soucek J., 2021. Numerical and physical modelling of the performance of the pro-vortex vanes in shaft spillways. IOP Conference Series: Materials Science and Engineering: WMCAUS 2021, vol. 1203, no. 3, article number: 032082, DOI: 10.1088/1757-899X/1203/3/032082, EDN: BJONDA.

9. Yang Zh., Yin J., Lu Ya., Liu Zh., Yang H., Xu G., 2021. Three-dimensional flow of a vortex drop shaft spillway with an elliptical tangential inlet. Water, vol. 13, no. 4, article number: 504, DOI: 10.3390/w13040504, EDN: EJAAUK.

10. Kobayashi K., Tamura Yu. Solution of unstable problem for hydraulic turbine in order to promote usage of hydraulic energy. IOP Conference Series: Earth and Environmen-tal Science: 29th IAHR Symposium on Hydraulic Machinery and Systems, vol. 240(2), arti-cle number: 022048, DOI: 10.1088/1755-1315/240/2/022048.

11. Artemyeva T.V., Zuikov A.L., 2021. Hydraulic modeling of surface vortex funnels. IOP Conference Series: Materials Science and Engineering: International Conference on Digi-tal Solutions for Automotive Industry, Roadway Maintenance and Traffic Control (DS ART 2020), Moscow, 14–16 Dec. 2020 year, vol. 1159, article number: 012006, DOI: 10.1088/1757-899X/1159/1/012006, EDN: UICAEM.

12. Ivanov I.I., Ivanova G.A., Semenkov V.M., Semenova T.V., 1985. Usloviya raboty sovmeshchennykh blokov GES v stroitel'nye i ekspluatatsionnye periody [Operating conditions of combined hydroelectric power station units during construction and operational periods]. Metody issledovaniy i gidravlicheskikh raschetov vodosbrosnykh gidrotekhnicheskikh sooruzheniy: materialy soveshchaniya [Proceed. of the Conference: Methods of Research and Hydraulic Calculations of Spillway Hydraulic Structures]. Leningrad, Energoatomizdat Publ., pp. 143-148. (In Russian).

13. Rusanov A.V., Gorodetsky Yu.V., Kosyanov D.Yu., Sukhorebry P.N., Khorev O.N., 2011. Raschetnoe issledovanie prostranstvennogo vyazkogo techeniya zhidkosti v ot-sasyvayushchey trube osevoy gidroturbiny [Calculation study of spatial viscous fluid flow in the suction pipe of an axial hydraulic turbine]. Problemy mashinostroeniya [Problems of Mechanical Engineering], vol. 14, no. 4, pp. 16-24, EDN: VQYJGX. (In Russian).

14. Sutherland R.A., 1959. Free Discharge through a Turbine Distributer, Case, and Draft Tube. Journal of Basic Engineering, vol. 81(4), pp. 488-490, DOI: 10.1115/1.4008531.

15. Xu T., Cheng Q., Lin Ch., Yu Q., Hu X., 2023. Study on Flow Characteristics of Francis Turbine Based on Large-Eddy Simulation. Water, vol. 15, no. 19, article number: 3372, DOI: 10.3390/w15193372. EDN: PHEODS.

16. Wang S., Pang S., Ding J., Wang M., Chen Z., 2024. The effect of damping grid on vortex rope and pressure fluctuation in the draft tube of Francis turbine. Journal of physics: Conference series: The 17th Asian International Conference on Fluid Machinery (AICFM 17 2023), vol. 2707, article number: 012062, 7 р., DOI: 10.1088/1742-6596/2707/1/012062.

17. Abelev A.S., Solovieva A.G., 1983. Gidravlicheskie usloviya propuska raskhodov cherez zdaniya stroyashchikhsya gidrostantsiy [Hydraulic conditions of the free discharge through buildings of unfinished hydro power stations]. Izvestiya VNIIG [News VNIIG], vol. 168, pp. 71-78. (In Russian).

18. Gagen A.V., 1968. O kholostykh popuskakh vody cherez protochnuyu chast' kapsul'nogo agregata [Free passage of water through the runner of a bulb unit]. Trudy Leningradskogo politekhnicheskogo instituta [Proceed. of Leningrad Polytechnic Institute], no. 289, pp. 131-134. (In Russian).

19. Gorbachev S.I., Sarkisova M.F., 1970. Propusk vody cherez protochnyy trakt gid-roturbiny pri otsutstvii rabochego kolesa [Flow through the discharge channel of a hydroelectric station turbines without the runner]. Gidrotehnicheskoe Stroitelʹstvo [Hydrotechnical Construction], no. 10, pp. 30-33. (In Russian).

20. Volshanik V.V., Zuikov A.L., Orekhov G.V., Churin P.S., 2013. Propusk kholostykh raskhodov cherez turbinnyy blok sredne- ili vysokonapornoy GES (chast' 1) [Idling flow through the turbine unit of a medium or high-pressure HPP (part 1)]. Gidrotehnicheskoe Stroitelʹstvo [Hydrotechnical Construction], no. 4, pp. 51-56, EDN: PZUBWL. (In Russian).

21. Volshanik V.V., Zuikov A.L., Orekhov G.V., Churin P.S., 2013. Propusk kholostykh raskhodov cherez turbinnyy blok sredne- ili vysokonapornoy GES (chast' 2) [Idling flow through the turbine unit of a medium or high-pressure HPP (part 2)]. Gidrotehnicheskoe Stroitelʹstvo [Hydrotechnical Construction], no. 5, pp. 32-40, EDN: QBBQQJ. (In Russian).

Download