GULLY MODELING FOR FOREST RECLAMATION PURPOSES
- Land Reclamation, Recultivation, and Land Protection
Purpose: to develop software for the process of arranging sprinklers on the water-conducting belt of a sprinkler to improve the irrigation quality.
Materials and methods. As a theoretical basis for creating software, the traditional methods of algorithmization and programming based on the processes of algorithm design for solving the problem of calculating the optimal spacing and flow-pressure characteristics of deflector nozzles on the water-conducting belt of sprinklers, respectively, formalized in the form of a scheme, and writing the source code in the object-oriented programming language Python were used.
Results. To replenish the domestic scientific and technical base for digitalization of engineering and reclamation work with information tools, software for the process of arranging sprinklers on water-conducting belt of a sprinkler for uniform distribution of artificial rain along the irrigated area has been developed. The algorithm graphical model is represented by three blocks. The “Source data input” block provides a choice of the type of sprinkler, the operating flow rate of irrigation water, as well as the material of the water conducting belt. In the “Intermediate and target values calculation” block, the irrigation water loss, head loss, distance between the end and first nozzles, as well as the total number of sprinklers are calculated. In the “Cyclic computation and output of results” block, head losses along the length and local pressure losses are determined for each section, the sum of which makes up the total head losses. Using the designed software, computations were performed using the example of a cantilever sprinkler with 4 sections of steel pipeline, a total flow rate of 6 l/s and a pressure at the end of the console of 10 m. It was determined that to ensure the uniform distribution of artificial irrigation along the irrigated area, it is necessary to install 9 sprinklers with variable spacing along the length console, and to provide a head at the beginning of the sprinkler machine of 23.8 m, taking into account the total head loss of 13.8 m.
Conclusions: the software allows simulating the optimal arrangement of deflector nozzles of the same size on a water-conducting belt at the design stage of double-cantilever and multi-tower lateral sprinklers.
doi: 10.31774/2712-9357-2024-14-3-66-79
irrigation, sprinkling, nozzle, uniformity of watering, software, digitalization
Novikov A. E., Drannikov A. V., Filimonov M. I., Zbukarev R. V. Software for the process of arranging sprinklers on the water-conducting belt of the sprinkler machine. Land Reclamation and Hydraulic Engineering. 2024;14(3):66–79. (In Russ.). https://doi.org/10.31774/2712-9357-2024-14-3-66-79.
1. Prokopets R.V., Fisenko B.V., Korsak V.V., 2023. Otsenka erozionnoy opasnosti pochvy pri oroshenii shirokozakhvatnymi dozhdeval'nymi mashinami [Assessment of soil erosion hazard when irrigated with wide-cut sprinklers]. Melioratsiya i vodnoe khozyaystvo [Land Reclamation and Water Management], no. 3, pp. 32-36, DOI: 10.32962/0235-2524-2023-3-32-36, EDN: OBAGWN. (In Russian).
2. Turapin S.S., Olgarenko G.V., Ryazantsev A.I., Antipin A.O., 2021. Ekologo-energeticheskoe sovershenstvovanie mnogoopornykh dozhdeval'nykh mashin [Ecological and energy improvement of multi-towered irrigation machines]. Melioratsiya i vodnoe khozyaystvo [Land Reclamation and Water Management], no. 3, pp. 30-36, DOI: 10.32962/0235-2524-2021-1-30-36, EDN: NLQPHR. (In Russian).
3. Zverkov M.S., 2018. Issledovanie davleniya kapel' iskusstvennogo dozhdya, sozdavaemogo dozhdeval'nymi apparatami, na pochvu [Study of artificial raindrops pressure on soil caused by sprinklers]. Dostizheniya nauki i tekhniki APK [Achievements of Science and Technology in Agro-Industrial Complex], vol. 32, no. 8, pp. 73-77, DOI: 10.24411/0235-2451-2018-10820, EDN: VAGMLH. (In Russian).
4. Chen R., Li H., Wang J., Song Z., 2023. Critical factors influencing soil runoff and erosion in sprinkler irrigation: Water application rate and droplet kinetic energy. Agricultural Water Management, vol. 283, 108299, DOI: 10.1016/j.agwat.2023.108299, EDN: ULRNXB.
5. Zhu Z., Li J., Zhu D., Gao Z., 2024. The impact of maize canopy on splash erosion risk on soils with different textures under sprinkler irrigation. Catena, vol. 234, 107608, DOI: 10.1016/j.catena.2023.107608, EDN: GRSEKM.
6. Olgarenko D.G., 2014. Sistema pokazateley dlya otsenki kachestva poliva sel'skokhozyaystvennykh kul'tur dozhdevaniem [System of indicators for assessing the sprinkling quality]. Melioratsiya i vodnoe khozyaystvo [Land Reclamation and Water Management], no. 2, pp. 23-27, EDN: SCQPRV. (In Russian).
7. Balakay G.T., Vasilyev S.M., Babichev A.N., 2017. [Concept of a new generation sprinkler machine for precision irrigation technology]. Nauchnyy zhurnal Rossiyskogo NII problem melioratsii, no. 2(26), pp. 1-18, available: https:rosniipm-sm.ru/article?n=312 [accessed 15.05.2024], EDN: YNWTBZ. (In Russian).
8. Borodychev V.V., Novikov A.E., Filimonov M.I., Lamskova M.I., 2016. Issledovanie nasadki s maloenergoemkim iskusstvennym dozhdem [Study of low power-consuming artificial rain nozzle]. Nauchnaya zhizn' [Scientific Life], no. 2, pp. 50-57, EDN: VXMJRR. (In Russian).
9. Novikov A.E., Konstantinova T.G., Lamskova M.I., 2013. Modernizatsiya dozhdeval’nykh mashin deflektornymi ezhektornymi nasadkami s maloenergoemkim iskusstvennym dozhdem [Modernization of sprinkling machines with deflector ejector nozzles with low-power artificial rain]. Vodoochistka. Vodopodgotovka. Vodosnabzhenie [Water Purification. Water Treatment. Water Supply], no. 8(68), pp. 18-20, EDN: RRVKJP. (In Russian).
10. Ryazantsev A.I., Egorova N.N., Bubenchikov M.A., Kashtanov V.V., Sirko V.G., 2009. Sovershenstvovanie DDA-100MA dlya poliva ovoshchnykh kul'tur [Improvement of DDA-100MA for irrigation of vegetable crops]. Melioratsiya i vodnoe khozyaystvo [Land Reclamation and Water Management], no. 1, pp. 35-36, EDN: LNODFE. (In Russian).
11. Rogachev A.F., Melikhova E.V., 2021. Sistema komp'yuternogo modelirovaniya i intellektual'nogo upravleniya programmiruemym agrarnym proizvodstvom na osnove retrospektivnykh dannykh [The system of computer modeling and intellectual management of programmable agricultural production based on retrospective data]. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional'noe obrazovanie [Proceedings of the Lower Volga Agro-University Complex: Science and Higher Education], no. 2(62), pp. 390-403, DOI: 10.32786/2071-9485-2021-02-40, EDN: RWATRG. (In Russian).
12. Bezrodnov N.A., Kuznetsov P.I., Melikhov V.V., Konstantinova T.G., Bolotin D.A., 2008. Sposob raspredeleniya iskusstvennogo dozhdya po oroshaemoy ploshchadi [Method for Distributing Artificial Rain along Irrigated Surface]. Patent RF, no. 2383128, EDN: RADPNC. (In Russian).
13. Solovyov D.A., Korsak V.V., Kamyshova G.N., Mityureva O.N., Terekhov P.O., 2021. Tsifrovye tekhnologii optimizatsii parametrov uvlazhneniya raschetnogo sloya pochvy [Digital technology for optimizing the parameters of moisture in the calculated soil layer]. Agrarnyy nauchnyy zhurnal [Agrarian Scientific Journal], no. 1, pp. 86-89, DOI: 10.28983/asj.y2021i1pp86-89, EDN: COVGJC. (In Russian).
14. Yurchenko I.F., 2021. Spetsifika tsifrovykh tekhnologiy po regulirovaniyu meliorativnogo rezhima agroekosistemy [Specifics of digital technologies for regulating the reclamation regime of the agroecosystem]. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional'noe obrazovanie [Proceedings of the Lower Volga Agro-University Complex: Science and Higher Education], no. 3(63), pp. 376-388, DOI: 10.32786/2071-9485-2021-03-39, EDN: QUUVOR. (In Russian).
15. Yurchenko I.F., 2021. [Digitalization of reclamation agricultural technologies: opportunities, challenges, prospects, innovations]. Melioratsiya i gidrotekhnika, vol. 11, no. 4, pp. 141-156, available: https:rosniipm-sm.ru/article?n=1242 [accessed 15.05.2024], DOI: 10.31774/2712-9357-2021-11-4-141-156, EDN: UMXZBH. (In Russian).
16. Yurchenko I.F., 2022. [Priority areas and activities of modern digitalization in land reclamation]. Melioratsiya i gidrotekhnika, vol. 12, no. 2, pp. 84-100, available: https:rosniipm-sm.ru/article?n=1280 [accessed 15.05.2024], DOI: 10.31774/2712-9357-2022-12-2-84-100, EDN: KYWLYQ. (In Russian).
17. Novikov A.E., Filimonov M.I., Drannikov A.V., Sklyar E.Yu., Zbukarev R.V., Semenenko S.Ya., 2023. Programma dlya rascheta shaga rasstanovki i raskhodno-napornykh kharakteristik deflektornykh nasadok na vodoprovodyashchem poyase dozhdeval'nykh mashin [Program for Calculating the Spacing and Flow-Pressure Characteristics of Deflector Nozzles on the Water-Conducting Belt of Sprinkler Machines]. Certificate of Registration of Computer Program of Russian Federation, no. 2024610565, EDN: PQMMTS. (In Russian).