Founder and publisher – Russian Scientific Research Institute of Land Improvement Problems
Land Reclamation and Hydraulic Engineering Melioraciâ i gidrotehnika
ISSN 2712-9357
RUS / ENG

ANALYSIS OF INTERRELATIONS OF THE NEGATIVE CONSEQUENCES OF SOIL EROSION ON AGRICULTURAL LAND. REVIEW OF METHODS OF ITS REDUCING

Annotation

Purpose: to determine causal relationships between factors influencing soil erosion in agricultural lands in the south of Russia, review methods and strategies for its reduction. 

Discussion. Under the prevailing influence of water and wind erosion in the region under consideration, this problem becomes complex, affecting physical, socio-economic and environmental aspects. Over 37 % of the surveyed lands are affected by this negative factor, and the reduction in yield in heavily washed-out areas can exceed 50 %. In this regard, we examined agricultural lands in the south of Russia that are exposed to water and wind erosion. The research is based on extensive information resources such as agricultural reports, industry statistics and previous research studies. 

Conclusions. Based on the unobvious, indirect consequences of soil erosion of agricultural land, interconnected by positive feedback, a self-reinforcing cycle is formed, leading to a constant increase in erosion processes. The factors reducing soil erosion on agricultural land and their interaction are examined. These methods make it possible to reduce the use of production resources and erosion by 20 % and up to 50 %, respectively, and improve the condition of the soil in the long term by 30 %. The use of biotechnology has made it possible to increase the yield of some crops by 21 %, the amount of macroelements from 5.3 to 6.13 %, and protein by 20 %. It is concluded that it is necessary to influence not only the factors of occurrence or conditions of the erosion and removal of the fertile soil layer, but also the possible consequences. All this will reduce the degradation of agricultural land, and these aspects can be used to develop sustainable land use strategies and introduce modern technologies in agriculture to preserve soil resources and improve the living standards.

doi: 10.31774/2712-9357-2024-14-2-186-210

Keywords

agricultural land degradation, erosion, cause-and-effect cycles (CLS), theoretical concept, sustainable land management practices

For quoting

Ushakov A. E., Sereda T. A. Analysis of interrelations of the negative consequences of soil erosion on agricultural land. Review of methods of its reducing. Land Reclamation and Hydraulic Engineering. 2024;14(2):186–210. (In Russ.). https://doi.org/10.31774/2712-9357-2024-14-2-186-210.

Authors

A. E. Ushakov – Associate Professor of the Department of Environmental Management Machinery, Candidate of Technical Sciences, Novocherkassk Engineering and Land Reclamation Institute – branch of the Don State Agrarian University, Novocherkassk, Russian Federation, sashka-ushakov@mail.ru, AuthorID: 1027912, ORCID ID: 0000-0002-3649-9945;

T. A. Sereda – Postgraduate Student, Novocherkassk Engineering and Land Reclamation Institute – branch of the Don State Agrarian University, Novocherkassk, Russian Federation, sereda.tatyana.97@mail.ru, ORCID ID: 0009-0005-3762-9245.

Bibliography

1. Federal'naya sluzhba gosudarstvennoy statistiki [Federal State Statistics Service], available: http:www.gks.ru/ [accessed 25.12.2023]. (In Russian).

2. Belyaeva M.V., Andreeva O.V., Kust G.S., Lobkovsky V.A., 2020. Opyt otsenki dinamiki degradatsii zemel' yuga yevropeyskoy chasti Rossii s ispol'zovaniem metodologii neytral'nogo balansa degradatsii zemel' [Experience in assessing the land degradation dynamics in the south of the European part of Russia using the methodology of land degradation neutrality]. Ekosistemy: ekologiya i dinamika [Ecosystems: Ecology and Dynamics], no. 3, vol. 4, pp. 145-165, EDN: AWQTRJ. (In Russian).

3. Fastova E.V. [et al.] (resp.), 2022. Doklad o sostoyanii i ispol'zovanii zemel' sel'skokhozyaystvennogo naznacheniya Rossiyskoy Federatsii v 2020 godu [Report on the State and Use of Agricultural Lands in the Russian Federation in 2020]. Ministry of Agriculture of the RF, Moscow, Rosinformagrotekh Publ., 384 p., EDN: DQZYNE. (In Russian).

4. O sostoyanii i ob okhrane okruzhayushchey sredy Rossiyskoy Federatsii v 2019 godu. Gosudarstvennyy doklad [State Report “On the State and Protection of the Environment of the Russian Federation in 2019”]. Moscow, Ministry of Natural Resources of Russia, Moscow State University named after M.V. Lomonosov, 2020, 1000 p. (In Russian).

5. Glushko A.Ya., 2010. Vliyanie vodnoy i vetrovoy erozii na zemel'nyy fond Yuga yevropeyskoy chasti Rossii [The influence of water and wind erosion on the land fund of the South of the European part of Russia]. Izvestiya Dagestanskogo gosudarstvennogo pedagogicheskogo universiteta. Yestestvennye i tochnye nauki [Bull. of Dagestan State Pedagogical University. Natural and Exact Sciences], no. 1(10), pp. 75-85, EDN: MRYCCR. (In Russian).

6. Poluektov E.V., Balakay G.T., 2022. [Soil erosion as a result of heavy rains in the south of the European part of Russia]. Melioratsiya i gidrotekhnika, vol. 12, no. 2, pp. 1-19, available: https:rosniipm-sm.ru/article?n=1275 [accessed 25.12.2023], https:doi.org/10.31774/2712-9357-2022-12-2-1-19, EDN: FZTIHT. (In Russian).

7. Barbrook-Johnson P., Penn A.S., 2022. Causal loop diagrams. Systems Mapping. Cham, Palgrave Macmillan, pp. 47-59, https:doi.org/10.1007/978-3-031-01919-7_4.

8. Anandhi A., 2017. CISTA-A: Conceptual model using indicators selected by systems thinking for adaptation strategies in a changing climate: Case study in agro-ecosystems. Ecological Modelling, vol. 345, pp. 41-55, https:doi.org/10.1016/j.ecolmodel.2016.11.015.

9. Zhang S.H., Wang S.R., Wang Y.M., 2000. Impacts of climate disaster on Beijing’s sustainable development and relevant strategies. Acta Geographica Sinica, 55, pp. 119-127. (In Chinese).

10. Tishkovich O.V., Yatsukhno V.M., 2020. Ekologo-ekonomicheskaya otsenka ushcherba ot vodnoy erozii pochv selskokhozyaystvennykh zemel administrativnykh rayonov Belarusi [Ecological and economic assessment of damage from water erosion of soils of agricultural lands in administrative regions of Belarus]. Vestnik Belorusskoy gosudarstvennoy selskokhozyaystvennoy akademii [Bull. of the Belarusian State Agricultural Academy], no. 3, pp. 212-216, EDN: BQIHDF. (In Russian).

11. Li H., Shi D., 2024. Spatio-temporal variation in soil erosion on sloping farmland based on the integrated valuation of ecosystem services and trade-offs model: A case study of Chongqing, southwest China. Catena, vol. 236, 107693, https:doi.org/10.1016/j.catena.2023.107693.

12. Guo F., Liu X., Mamat Z., Zhang W., Xing L., Wang R., Luo X., Wang C., Zhao H., 2023. Analysis of spatiotemporal variations and influencing factors of soil erosion in the Jiangnan Hills red soil zone, China. Heliyon, vol. 9, e19998, https:doi.org/10.1016/j.heliyon.2023.e19998.

13. Ushakov A.E., 2022. Razrabotka i ispytanie pochvoobrabatyvayushchego orudiya dlya provedeniya meliorativnogo glubokogo rykhleniya sklonovykh zemel' [Development and testing of tillage tools for reclamation deep loosening of sloping lands]. Vestnik NGIEI [NGIEI Bulletin], no. 2(129), pp. 31-40, DOI: 10.24412/2227-9407-2022-2-31-40, EDN: KDHUNY. (In Russian).

14. Kulik K.N., Zubov A.R., Zykov I.G., Zubov A.A., 2018. Metodologiya izucheniya erozionnykh protsessov v lesoagrarnykh i tekhnogennykh landshaftakh: monografiya [Methodology for Studying Erosion Processes in Agroforestry and Technogenic Landscapes: monograph]. Federal Scientific Center for Agroecology RAS, Volgograd, 252 p., EDN: SNHMLK. (In Russian).

15. Ivonin V.M., 2021. [Soil erosion at snowmelt runoff on slopes with forest belts]. Nauchnyy zhurnal Rossiyskogo NII problem melioratsii, vol. 11, no. 2, pp. 126-143, available: https:rosniipm-sm.ru/article?n=1200 [accessed 25.12.2023], DOI: 10.31774/2222-1816-2021-11-2-126-143, EDN: YXICVN. (In Russian).

16. Mustafaeva R.R., 2021. Sovremennye tendentsii investitsiy v selskoe khozyaystvo [Current trends in investment in agriculture]. Ekonomika, predprinimatelstvo i pravo [Economics, Entrepreneurship and Law], vol. 11, no. 6, pp. 1457-1468, DOI: 10.18334/epp.11.6.112254, EDN: NPXRZU. (In Russian).

17. Smirnova P.S., Tikhomirova V.V., 2023. Problema zagryazneniya pochvy pestitsidami i puti yeye resheniya [The problem of soil contamination with pesticides and ways to solve it]. Mezhdunarodnyy zhurnal prikladnykh i fundamental'nykh issledovaniy [International Journal of Applied and Fundamental Research], no. 3, pp. 37-41, DOI: 10.17513/mjpfi.13519, EDN: WKEARE. (In Russian).

18. Anuchina A.V., 2019. [The toxic effects of pesticides on humans and animals]. Mezhdunarodnyy studencheskiy nauchnyy vestnik, no. 1, available: https:eduherald.ru/ru/article/view?id=19454 [accessed 11.02.2024], EDN: VVHVUE. (In Russian).

19. Chursin A.I., Kryukova N.A., 2016. Agroekologicheskaya otsenka zemel' v sisteme ratsional'nogo prirodopol'zovaniya: monografiya [Agroecological Assessment of Soil in the System of Rational Environmental Management: monograph]. Penza, PGUAS, 192 p., EDN: ZRTVDJ. (In Russian).

20. Rosset P.M., Machín Sosa B., Roque Jaime A.M., Ávila Lozano D.R., 2011. The Campesino-to-Campesino agroecology movement of ANAP in Cuba: social process methodology in the construction of sustainable peasant agriculture and food sovereignty. The Journal of Peasant Studies, vol. 38, iss. 1, pp. 161-191, https:doi.org/10.1080/03066150.2010.538584.

21. Agroekologicheskie i drugie innovatsionnye podkhody v podderzhku ustoychivykh sel'skokhozyaystvennykh i prodovol'stvennykh sistem, povyshayushchikh uroven' prodovol'stvennoy bezopasnosti i kachestvo pitaniya. Doklad Gruppy ekspertov vysokogo urovnya po voprosam prodovol'stvennoy bezopasnosti i pitaniya Komiteta po vsemirnoy prodovol'stvennoy bezopasnosti [Agroecological and Other Innovative Approaches to Support Sustainable Agricultural and Food Systems that Improve Food Security and Nutrition. Report of the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security]. Rome, 2019, 203 p. (In Russian).

22. Turdaliev A.T., Eshpulatov Sh.Ya., 2023. Agroekologicheskie meropriyatiya po povysheniyu plodorodiya i produktivnosti pochv [Agroecological measures for increasing soil fertility and productivity]. Nauchnoe obozrenie. Biologicheskie nauki [Scientific Review. Biological Sciences], no. 1, pp. 36-40, DOI: 10.17513/srbs.1311, EDN: SDWYTU. (In Russian).

23. Gliessman S.R., 2001. Agroecosystem Sustainability: Developing Practical Strategies. Boca Raton, CRC Press, 210 p. Advances in Agroecology, vol. 4, https:doi.org/10.1201/9781420041514.

24. Altunina L.K., Fufaeva M.S., Filatov D.A., Svarovskaya L.I., Zhuk E.A., Bender O.G., 2012. Metod zashchity pochv ot erozii s primeneniem kriogeley i mnogoletnikh rasteniy [The method of soils protection from erosion using cryogels and perennials plants]. Vestnik Tomskogo gosudarstvennogo pedagogicheskogo universiteta [Bulletin of Tomsk State Pedagogical University], iss. 7(122), pp. 177-183, EDN: PCEULR. (In Russian).

25. Kashina M.S., 2017. Biotekhnologicheskiye metody v selektsii rasteniy [Biotechnological methods in plant breeding]. Studencheskiy nauchnyy forum – 2017: materialy IX Mezhdunaridnoy studencheskoy nauchnoy konferentsii [Student Scientific Forum – 2017: Proc. of the IX International Student Scientific Conference], available: https:scienceforum.ru/2017/article/2017031286 [accessed 07.02.2024]. (In Russian).

26. Poltorak Ya.A., 2011. [Application of biotechnology in agricultural production]. Nauchnyy zhurnal KubGAU: politematicheskiy setevoy elektronnyy zhurnal, no. 71(07), pp. 104-115, available: http:ej.kubagro.ru/2011/07/pdf/03.pdf [accessed 07.02.2024], EDN: OIGYCP. (In Russian).

27. Poluektov E.V., 2020. Eroziya pochv i plodorodie: monografiya [Soil Erosion and Fertility: monograph]. Novocherkassk Reclamation Engineering Institute of Don State Agrarian University, Novocherkassk, Lik Publ., 229 p., EDN: IIILMX. (In Russian).

28. Fulajtar E., Mabit L., Renschler C.S., Lee Zhi Yi A., 2017. Use of 137Cs for Soil Erosion Assessment. Food and Agriculture Organization of the United Nations, Rome, 64 p.

29. Zížala D., Juřicová A., Zádorová T., Zelenková K., Minařík R., 2019. Mapping soil degradation using remote sensing data and ancillary data: South-East Moravia, Czech Republic. European Journal of Remote Sensing, vol. 52, pp. 108-122, DOI: 10.1080/22797254. 2018.1482524.

30. Wang W., Samat A., Ge Y., Ma L., Tuheti A., Zou S., Abuduwaili J., 2020. Quantitative soil wind erosion potential mapping for Central Asia using the Google Earth Engine platform. Remote Sensing, vol. 12, iss. 20, 3430, https:doi.org/10.3390/rs12203430, EDN: LWBMAT.

31. Kouchami-Sardoo I., Shirani H., Esfandiarpour-Boroujeni I., Besalatpour A.A., Hajabbasi M.A., 2020. Prediction of soil wind erodibility using a hybrid Genetic algorithm – Artificial neural network method. Catena, vol. 187, 104315, https:doi.org/10.1016/j.catena.2019.104315.

32. Borrelli P., Lugato E., Montanarella L., Panagos P., 2017. A new assessment of soil loss due to wind erosion in European agricultural soils using a quantitative spatially distributed modelling approach. Land Degradation & Development, vol. 28, iss. 1, pp. 335-344, DOI: 10.1002/ldr.2588.

33. Lytov M.N., 2023. [Methodological management tools for irrigation with artificial intelligence]. Melioratsiya i gidrotekhnika, vol. 13, no. 2, pp. 1-18, available: https:rosniipm-sm.ru/article?n=1352 [accessed 07.02.2024], https:doi.org/10.31774/2712-9357-2023-13-2-1-18, EDN: PLWWXK. (In Russian).

34. Zhuliev M.K., Gafurova L.A., 2019. Perspektivy primeneniya sovremennykh tekhnologiy pri modelirovanii erozionnykh protsessov [Prospects for the use of modern technologies in modeling erosion processes]. Sovremennye problemy izucheniya pochvennykh i zemel'nykh resursov: sb. dokl. Tret'yey Vseros. otkrytoy konferentsii [Modern Problems of Studying Soil and Land Resources: Collection of Reports of the Third All-Russian Open Conference]. Moscow, Soil Institute named after V. V. Dokuchaev, pp. 48-53. (In Russian).

35. Ivanov A.S., 2023. Sostoyanie i perspektivy bespilotnykh sel'skokhozyaystvennykh traktorov, rabotayushchikh na vozobnovlyaemykh istochnikakh energii [Prospects of autonomous agricultural tractors powered by renewable energy sources]. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta [News of Orenburg State Agrarian University], no. 1(99), pp. 153-159, EDN: DEXBXA. (In Russian).

36. Yurchenko I.F., 2022. [Advanced technologies for innovative irrigation]. Melioratsiya i gidrotekhnika, vol. 12, no. 4, pp. 233-245, available: https:rosniipm-sm.ru/article?n=1323 [accessed 07.02.2024], https:doi.org/10.31774/2712-9357-2022-12-4-233-245, EDN: RJPHLN. (In Russian).

Download