GULLY MODELING FOR FOREST RECLAMATION PURPOSES
- Land Reclamation, Recultivation, and Land Protection
Purpose: to develop a systematic approach to solving the problem of soil fertility based on a model for managing the flows of organic carbon and nitrogen on reclaimed lands.
Materials and methods: the working hypothesis of the study is the assumption of the possibility of creating a system of tools for regulating the flows of organic carbon and nitrogen, working within the framework of the principle of nature-likeness and ensuring comprehensive regulation of soil formation factors and increasing the agroecosystem productivity.
Results. The conceptual model for managing organic carbon and nitrogen flows on reclaimed lands was developed. The model includes a quantitative calculation of the organic carbon and nitrogen cycles in agroecosystems, the development of scenario forecasts, the development of a control decision and assessment of its execution consequences, the determination of the basic controller’s parameters, the determination of the composition and options for using the controller’s tools, the organization of process monitoring and the assessment of scenario forecasts for actual data. The controller structure of carbon and nitrogen cycle processes for agroecosystems is detailed by the model. The controller includes tools for influencing small nitrogen and carbon cycles, possible ways to implement the tool in a practical application and technologies through which the impact is carried out, with parameters and restrictions specified for a particular case. The basic controller tools are: the plant physiological activity regulation, the phytomass accumulation regulation, the phytomass turnover regulation, the circulation of animal waste regulation, the C:N ratio regulation, the regulation of soil microbiota activity.
Conclusions: a conceptual model for managing the flows of organic carbon and nitrogen including a system of tools for the integrated regulation of soil formation factors and increasing the productivity of agroecosystems has been developed.
doi: 10.31774/2712-9357-2024-14-1-51-70
reclaimed land, soil fertility, nitrogen, organic carbon, management model, regulator controller
Lytov M. N. The generalized model of organic carbon and nitrogen flow management on reclaimed lands. Land Reclamation and Hydraulic Engineering. 2024;14(1):51–70. (In Russ.). https://doi.org/10.31774/2712-9357-2024-14-1-51-70
1. Gamzikov G.P., Suleimenov S.Z., 2020. Vliyanie biomassy rasteniy na azotnyy rezhim seroy lesnoy pochvy i produktivnost' polevykh kul'tur [Influence of plant biomass on nitrogen regime of gray forest soil and productivity of field crops]. Rossiyskaya sel'skokho-zyaystvennaya nauka [Russian Agrarian Science], no. 4, pp. 32-36, DOI: 10.31857/S2500262720040080, EDN: YBDCAS. (In Russian).
2. Kozhevnikov N.V., Zaushintsenna A.V., 2015. Problema uskorennogo pochvoobrazovaniya v rekul'tivatsii narushennykh zemel' [Problem of accelerated soil formation in reclamation of disturbed lands]. Vestnik Kemerovskogo gosudarstvennogo universiteta [Bulletin of Kemerovo State University], no. 1-2(61), pp. 26-29, EDN: TOLAXR. (In Russian).
3. Avdeev V.I., 2008. Etapy formirovaniya stepnykh landshaftov v Yevrazii. 1. Obshchie aspekty problemy [Stages of steppe landscapes formation in Eurasia. 1. General aspects of the problem]. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta [Bull. of Orenburg State Agrarian University], no. 2(18), pp. 38-42, EDN: MHWZRL. (In Russian).
4. Chimitdorzhieva G.D., 2019. K voprosu o vosstanovlenii plodorodiya deflirovannykh sukhostepnykh pochv (na primere model'nykh laboratornykh opytov) [Fertility restoration in deflated dry steppe soils on the example of model laboratory experiments]. Aridnye ekosistemy [Arid Eco-Systems], vol. 25, no. 1(78), pp. 43-48, EDN: YSPVJZ. (In Russian).
5. Sychev V.G., Shevtsova L.K., Belichenko M.V., Rukhovich O.V., Ivanova O.I., 2018. Vzaimodeystvie tsiklov ugleroda i azota v osnovnykh tipakh pochv pri dlitel'nom primenenii razlichnykh sistem udobreniya [Interaction of carbon and nitrogen cycles in basic types of soils with long-term use of various fertilizer systems]. Problemy agrokhimii i ekologii [Agrochemistry and Ecology Problems], no. 4, pp. 68-77, DOI: 10.26105/AE.2018.4.33.016, EDN: YRYERV. (In Russian).
6. Valkov V.F., Kazeev K.Sh., Kolesnikov S.I., 2007. Aktual'nye problemy ekologii i plodorodiya pochv yuga Rossii [The basic problems of ecology and soil fertility in the south of Russia]. Yug Rossii: ekologiya, razvitie [South of Russia: Ecology, Development], vol. 2, no. 3, pp. 90-93, EDN: KWMPJL. (In Russian).
7. Zolotareva E.L., Zolotarev A.A., Leonov E.I., 2019. Ekologo-ekonomicheskie aspekty ispol'zovaniya sel'skokhozyaystvennykh zemel' v Rossiyskoy Federatsii [Ecological and economic aspects of the agricultural land use in the Russian Federation]. Vestnik Kurskoy gosudarstvennoy sel'skokhozyaystvennoy akademii [Bulletin of Kursk State Agricultural Academy], no. 1, pp. 88-92, EDN: NWUEHC. (In Russian).
8. Makarova N.M., 2016. Ekologicheskie problemy v sisteme upravleniya plodorodiem pochv v agrolandshaftakh [Environmental problems in the system of soil fertility management in agricultural landscapes]. Puti povysheniya effektivnosti oroshaemogo zemledeliya [Ways of Increasing the Efficiency of Irrigated Agriculture], no. 2(62), pp. 150-153, EDN: WBMQET. (In Russian).
9. Zimovets B.A., 1991. Problemy melioratsii, plodorodiya i ekologii pochv aridnoy zony [Problems of reclamation, fertility and ecology of soils in the arid zone]. Pochvovedenie [Agriculture], no. 9, pp. 87-96, EDN: UBCIUX. (In Russian).
10. Lyakh N.A., Kovaleva K.Yu., Vladimirov S.A., 2020. Puti povysheniya effektivnosti ispol'zovaniya zemel'nykh i vodnykh resursov [Ways to increase the efficiency of using land and water resources]. Tendentsii razvitiya nauki i obrazovaniya [Trends in Development of Science and Education], no. 65-1, pp. 147-150, DOI: 10.18411/lj-09-2020-33, EDN: USYYZG. (In Russian).
11. Pankovsky G.A., 2003. Problema ustoychivosti sel'skokhozyaystvennogo proizvodstva [The problem of sustainability of agricultural production]. Ekonomika sel'skogo khozyaystva. Referativnyy zhurnal [Economics of Agriculture of Russia. Review Journal], no. 2, p. 266, EDN: ECENSV. (In Russian).
12. Belaya S.A., 2020. Strategii proizvodstva agrarnoy produktsii: mirovoy opyt [Agricultural production strategies: World experience]. Ekonomicheskiy vestnik universiteta [Economic Bulletin of the University], no. 45, pp. 7-21, DOI: 10.31470/2306-546X-2020-45-07-21, EDN: XPONZI. (In Russian).
13. Kuznetsova E.I., Mikheev V.A., Dotsenko S.G., 2012. Oroshenie i udobrenie kormovykh ugodiy na okul'turennykh pochvakh [Irrigation and fertilization of forage lands on cultivated soils]. Plodorodie [Fertility], no. 2(65), pp. 47-48, EDN: OWNHSP. (In Russian).
14. Yasonidi O.E., 2002. Otsenka biologicheskoy effektivnosti orosheniya i udobreniya agrotsenozov [Evaluation of biological efficiency of irrigation and fertilization of agrocenoses]. Vestnik Rossiyskoy akademii sel'skokhozyaystvennykh nauk [Bulletin of the Russian Academy of Agricultural Sciences], no. 4, pp. 59-61, EDN: WTJDJH. (In Russian).
15. Lytov M.N., 2023. Printsipy regulirovaniya potokov i balansa biogennykh elementov na meliorirovannykh zemlyakh [Principles of regulation of flows and balance of nutrients on reclaimed lands]. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional'noe obrazovanie [Bull. of Lower Volga Agro-University Complex: Science and Higher Education], no. 3(71), pp. 141-152, DOI: 10.32786/2071-9485-2023-03-14, EDN: LSWBFJ. (In Russian).
16. Lavrentyeva I.N., Merkusheva M.G., Ubugunov L.L., 2017. Otsenka zapasov organicheskogo ugleroda i potokov CO2 v travyanykh ekosistemakh Zapadnogo Zabaykal'ya [Evaluation of organic carbon reserves and CO2 fluxes in grass ecosystems of Western Transbaikalia]. Pochvovedenie [Eurasian Soil Science], no. 4, pp. 411-426, DOI: 10.7868/S0032180X17040050, EDN: YIVCTZ. (In Russian).
17. Moiseev B.N., Alyabina I.O., 2002. Otsenka i kartografirovanie potokov organicheskogo ugleroda, postupayushchego v pochvy osnovnykh biomov Rossii [Assessment and mapping of organic carbon flows entering the soils of the main biomes of Russia]. Pochvovedenie [Eurasian Soil Science], no. 6, pp. 675-681, EDN: TMFKDZ. (In Russian).
18. Sambuu A.D., Dapylday A.B., Kuular A.N., 2009. Pul ugleroda v travyanykh ekosistemakh i agrotsenozakh Tuvy [Carbon pool in grass ecosystems and agrocenoses of Tuva]. Vestnik KrasGAU [Bulletin of KrasGAU], no. 12(39), pp. 50-56, EDN: KZZQVH. (In Russian).
19. Chuprova V.V., 2002. Zapasy i potoki ugleroda i azota v ekosisteme zernotra-vyanogo zvena sevooborota [Carbon and nitrogen flow stocks in ecosystem of the grain-grass link of crop rotation]. Vestnik KrasGAU [Bulletin of KrasGAU], no. 1, pp. 89-93, EDN: ZDORNR. (In Russian).
20. Alferov A.A., Chernova L.S., 2021. Potoki azota i izmenenie rezhima funktsionirovaniya agroekosistemy v posevakh yarovoy pshenitsy [Nitrogen flows and changes in the functioning regime of the agroecosystem in spring wheat crops]. Plodorodie [Fertility], no. 6(123), pp. 69-71, DOI: 10.25680/S19948603.2021.123.19, EDN: PSQQTN. (In Russian).
21. Shevchenko V.A., Lytov M.N., 2023. Kontseptual'nye podkhody k otsenke effe-ktivnosti i optimizatsii upravleniya balansom biogennykh elementov [Conceptual approaches to assessing the effectiveness and optimizing the management of the balance of nutrients]. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee profes-sional'noe obrazovanie [Bull. of Lower Volga Agro-University Complex: Science and Higher Education], no. 2(70), pp. 15-22, DOI: 10.32786/2071-9485-2023-02-01, EDN: GSILKO. (In Russian).
22. Shepelev M.A., Kadyrova G.B., 2017. Sostoyanie balansa gumusa i biogennykh elementov v agroekosistemakh TOO “Chernyshevskoe” Kostanayskoy oblasti [Status of humus and nutrients balance in agroecosystems of Chernyshevskoe LLP, Kostanay region]. 3i: Intellect, Idea, Innovation – intellekt, ideya, innovatsiya [3I: Intellect, Idea, Innovation], no. 2-1, pp. 293-300, EDN: UAHLHF. (In Russian).
23. Zalibekov Z.G., 2005. Arid soil formation and the problems of its studying in the south regions of Russia. Aridnye ekosistemy [Arid Ecosystems], vol. 11, no. 26-27, pp. 94-99, EDN: KNXXCN. (In Russian).
24. Melikhova N.P., Zibarov A.A., Vronskaya L.V., 2022. Produktivnost' i plodorodie pochvy v oroshaemykh sevooborotakh Povolzh'ya [Soil productivity and fertility in irrigated crop rotations in the Volga region]. Oroshaemoe zemledelie [Irrigated Agriculture], no. 1, pp. 25-28, DOI: 10.35809/2618-8279-2022-1-3, EDN: FJGOIJ. (In Russian).
25. Parton W.J., 1996. The CENTURY model. Evaluation of Soil Organic Matter Models. Berlin, Heidelberg, Springer, pp. 283-291, DOI: 10.1007/978-3-642-61094-3_23. (NATO ASI Series, vol. 38).
26. Molina J.A.E., Clapp C.E., Shaffer M., Chichester F., Larson W., 1983. NCSOIL, a model of nitrogen and carbon transformations in soil: Description, calibration, and behavior. Soil Science Society of America Journal, vol. 47, pp. 85-91, DOI: 10.2136/sssaj1983.03615995004700010017x.
27. Nadporozhskaya M.A., Bykhovets S.S., Abakumov E.V., 2022. Primenenie matematicheskoy modeli ROMUL dlya otsenki emissii CO2 i dinamiki organicheskogo veshchestva litozemov Subantarktiki [Application of the ROMUL mathematical model for estimation of CO2 emission and dynamics of organic matter in the Subantarctic lithozems]. Pochvovedenie [Soil Science], no. 4, pp. 415-427, DOI: 10.31857/S0032180X22040128, EDN: LPVCRE. (In Russian).
28. Abrahamsen D., Søren P., Søren H., 2000. Daisy: An open soil-crop-atmosphere system model. Environmental Modelling & Software, vol. 15, pp. 313-330, DOI: 10.1016/S1364-8152(00)00003-7.
29. Guo J.W., Zou Y.C., Huo L.L., Lü X.G., 2013. DNDC model, a model of biogeochemical processes: Research progress and applications. Ying Yong Sheng Tai Xue Bao [The Journal of Applied Ecology], Feb., vol. 24(2), 571-80, PMID: 23705407. (In Chinese).
30. Lytov M.N., 2019. [Features of the formation of soil water regime at different levels of water supply to soybeans under irrigation]. Nauchnyy zhurnal Rossiyskogo NII problem melioratsii, no. 3(35), pp. 31-49, available: https:rosniipm-sm.ru/article?n=999 [accessed 15.12.2023], DOI: 10.31774/2222-1816-2019-3-31-49, EDN: EYSGOC. (In Russian).
31. Borodychev V.V., Lytov M.N., 2015. Osobennosti primeneniya mineral'nykh udobreniy pri vozdelyvanii soi pri oroshenii v usloviyakh Nizhnego Povolzh'ya [Application features of mineral fertilizers when cultivating soybeans under irrigation in the Lower Volga region]. Plodorodie [Fertility], no. 1(82), pp. 33-35, EDN: THJMHP. (In Russian).
32. Borodychev V.V., Lytov M.N., Pakhomov D.A., 2008. Formirovanie optimal'noy struktury agrotsenoza soi na meliorirovannykh zemlyakh Nizhnego Povolzh'ya [Formation of optimal of soybean agrocenosis structure on reclaimed lands of the Lower Volga region]. Plodorodie [Fertility], no. 5(44), pp. 27-28, EDN: KUCMUP. (In Russian).
33. Dubenok N.N., Borodychev V.V., Lytov M.N., Pakhomov D.A., 2007. Formirovanie bezdifitsitnogo balansa azota v pochve pri vozdelyvanii bobovykh kul'tur [Formation of a deficit-free nitrogen balance in soil during the cultivation of legumes]. Agrokhimicheskiy vestnik [Agrochemical Bulletin], no. 5, pp. 9-11, EDN: MUKEJJ. (In Russian).
34. Lytov M.N., 2023. Agroekologicheskaya otsenka sortov i priemov vozdelyvaniya oroshaemoy soi na povtorno osvaivaemykh zemlyakh Volgogradskogo Zavolzh'ya [Agroecological assessment of varieties and methods of cultivation of irrigated soybeans on re-developed lands of the Volgograd Trans-Volga region]. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional'noe obrazovanie [Bull. of Lower Volga Agro-University Complex: Science and Higher Education], no. 2(70), pp. 191-200, DOI: 10.32786/2071-9485-2023-02-22, EDN: PULLGV. (In Russian).
35. Kovalev N.G., 2013. Sovremennye problemy proizvodstva i ispol'zovaniya organicheskikh udobreniy [Modern problems of production and use of organic fertilizers]. Vestnik Vserossiyskogo nauchno-issledovatel'skogo instituta mekhanizatsii zhivotnovodstva [Bull. of All-Russian Scientific Research Institute of Livestock Mechanization], no. 2(10), pp. 82-101, EDN: QBIXDN. (In Russian).