Founder and publisher – Russian Scientific Research Institute of Land Improvement Problems
Land Reclamation and Hydraulic Engineering Melioraciâ i gidrotehnika
ISSN 2712-9357
RUS / ENG

IMPACT OF AGROTECHNICAL MEASURES AND RECLAMATION PROTECTIVE FOREST PLANTATIONS ON SOIL DEFLATION IN ROSTOV REGION

Annotation

Purpose: to study the deflation manifestation patterns on Rostov region soils in the cold and warm periods of the year, depending on the agricultural background, the projective cover of soil surface by plants and the availability of reclamation protective forest plantations. 

Materials and methods. Deflation studies were being carried out on the soils of Aksai and Orlovsky districts Rostov region from 1970 to 2022. Conventional research methods including the measurement of wind speed by anemometers, were used, the soil layer displaced by the wind was determined by the method of pins and dust collectors of authors own design. 

Results. During the period of dust storm from April 14 to April 21, 2003, the influence of the position and amount of stubble on soil removal under various methods of tillage was determined. During chisel tillage, the largest amount of stubble was noted – 250 pcs/sq. m, including the standing one – 110 pcs/sq. m and lying one of 140 pcs/sq. m. At the same time, there was a decrease in wind velocity from 10.9 m/s at a height of 0.8 m to 3.2 m/s at a height of 0.05 m. With more than 120 stubble pcs/sq. m remaining on the soil surface, the soil is protected from wind, and the removal of fine earth in these options is zero. The projective soil surface cover by plants is the next factor influencing deflation. When it decreases, the soil remains unprotected from wind gusts and soil removal increases, respectively, from 1 t/ha from a perennial grasses field up to 40–70 t/ha by non-moldboard plowing and up to 260–297 t/ha by moldboard plowing. 

Conclusions. To reduce the loss of fertile soil layer from deflation, it is recommended to carry out the basic tillage, leaving stubble and crop residues on soil surface, which reduce the wind velocity near the soil surface and prevent deflation. 

doi: 10.31774/2712-9357-2023-13-2-19-38

Keywords

deflation, wind erosion, soil protective measures, tillage, soil surface cover ratio

For quoting

Poluektov E. V., Masnyi R. S., Balakay G. T. Impact of agrotechnical measures and reclamation protective forest plantations on soil deflation in Rostov region. Land Reclamation and Hydraulic Engineering. 2023;13(2):19–38. (In Russ.). https://doi.org/10.31774/2712-9357-2023-13-2-19-38.

Authors

E. V. Poluektov – Head of the Chair of Soil Science, Irrigated Agriculture and Geodesy, Doctor of Agricultural Sciences, Professor, Novocherkassk Engineering and Land Reclamation Institute – branch of the Don State Agrarian University, Novocherkassk, Russian Federation, geo@ngma.su

R. S. Masnyi – Acting Director, Candidate of Military Sciences, Russian Scientific Research Institute of Land Improvement Problems, Novocherkassk, Russian Federation, rosniipm@yandex.ru

G. T. Balakay – Chief Researcher, Doctor of Agricultural Sciences, Professor, Russian Scientific Research Institute of Land Improvement Problems, Novocherkassk, Russian Federation, balakaygt@rambler.ru

Bibliography

1. Shchedrin V.N., Balakay G.T., Poluektov E.V., Balakay N.I., 2016. Usloviya formirovaniya poverkhnostnogo stoka. Prognoz prichinyaemogo ushcherba. Kompensatsionnye meliorativnye meropriyatiya [Conditions for the Surface Runoff Formation. Forecast of the Damage Caused. Compensatory Reclamation Measures]. Novocherkassk, RosNIIPM, 450 p. (In Russian).

2. Duniway M.C., Pfennigwerth A., Fick S., Nauman T., Belnap J., Barger N., 2019. Wind erosion and dust from US drylands: a review of causes, consequences, and solutions in a changing world. Ecosphere, vol. 10, iss. 3, e02650, DOI: 10.1002/ecs2.2650.

3. Ypsilantis W.G., 2011. Upland soil erosion monitoring and assessment: An overview. Tech Note 438. Bureau of Land Management, National Operations Center. Denver, 35 p. 

4. Belobrov V.P., Dridiger V.K., Yudin S.A., Ermolaev N.R., 2021. K voprosu o diagnostike i zashchite pochv ot deflyatsii v Stavropol'skom krae [On issue of diagnostics and protection of soils from deflation in Stavropol Territory]. Agrarnyy vestnik Urala [Agrarian Bulletin of the Urals], no. 2(205), pp. 12-25, DOI: 10.32417/1997-4868-2021-205-02-12-25. (In Russian).

5. Burlai A.V., Fursov A.D., 2019. Otsenka agrokhimicheskogo i ekologo-toksikologicheskogo sostoyaniya zemel' sel'skokhozyaystvennogo naznacheniya v zapadnoy chasti Stavropol'skogo kraya [Assessment of agrochemical, ecological and toxicological state of agricultural land in the western part of Stavropol Territory]. Dostizheniya nauki i tekhniki APK [Achievements of Science and Technology of Agro-Industrial Complex], vol. 33, no. 4, pp. 16-19, DOI: 10.24411/0235-2451-2019-10404. (In Russian).

6. Izvekov A.S., 2012. Zashchita pochv ot erozii i vosproizvodstvo plodorodiya v yuzhnykh i lesostepnykh rayonakh Rossii [Protection of eroded soils and the fertility recovery within the dry-steppe and forest-steppe zones of Russia]. Byulleten' Pochvennogo instituta im. V. V. Dokuchaeva [Dokuchaev Soil Institute Bulletin], no. 70, pp. 79-95. (In Russian).

7. Kuznetsov M.S., Glazunov G.P., 2020. Eroziya i okhrana pochv [Erosion and Soil Protection]. Moscow, Moscow State University Publ., 387 p. (In Russian).

8. Maltsev K.A., Ermolaev O.P., 2019. Potentsial'nye erozionnye poteri pochvy na pakhotnykh zemlyakh evropeyskoy territorii Rossii [Potential soil loss from erosion on arable lands of European part of Russia]. Pochvovedenie [Eurasian Soil Science], no. 12, pp. 1502-1512, DOI: 10.1134/S0032180X19120104. (In Russian). 

9. Kogut B.M., Artemyeva Z.S., Kirillova N.P., Yashin M.A., Soshnikova E.I., 2019. Komponentnyy sostav organicheskogo veshchestva vozdushno-sukhikh i vodoustoychivykh makroagregatov 2–1 mm tipichnogo chernozema v usloviyakh kontrastnogo zemlepol'zovaniya [Organic matter of the air-dried and water-stable macroaggregates of haplic chernozem in contrasting variants of land use]. Pochvovedenie [Soil Science], no. 2, pp. 161-170, DOI: 10.1134/S0032180X19020084. (In Russian).

10. Ivanov A.L., Kiryushin V.I., Molchanov E.N., Savin I.Yu., Stolbovoy V.S., 2016. Analiz zemel'noy reformy i agropromyshlennogo proizvodstva za chetvert' veka. Pochvenno-ekologicheskie, tekhnologicheskie, institutsional'nye i infrastrukturnye aspekty modernizatsii. Zemel'naya sluzhba (doklad) [Analysis of land reform and agro-industrial production for a quarter of a century. Soil-ecological, technological, institutional and infrastructure aspects of modernization. Land service (report)]. Moscow, Dokuchaev Soil Institute, 93 p. (In Russian).

11. Dridiger V.K., Godunova E.I., Eroshenko F.V., Stukalov R.S., Gadzhiumarov R.G., 2018. Effect of No-till technology on erosion resistance, the population of earthworms and humus content in soil. Research Journal of Pharmaceutical, Biological and Chemical Sciences, no. 9(2), pp. 766-770, DOI: 10.25930/n2wx-cf73.

12. Clark R.D., 1980. Erosion condition classification system. Tech Note 346. Bureau of Land Management. Denver, Denver Service Center, 47 р.

13. Izvekov A.S., Sazhin A.N., Vasiliev Yu.I., 2002. Vetroenergeticheskie usloviya formirovaniya pyl'nykh bur' v stepyakh Evropeyskoy Rossii [Wind energy conditions for the dust storms formation in the steppes of European Russia]. Vestnik RASKHN [Bulletin of RAS], no. 4, pp. 47-57. (In Russian).

14. Romanovskaya A.Yu., Savin I.Yu., 2020. Sovremennyye metody monitoringa vetrovoy erozii pochv [Modern techniques for monitoring soil wind erosion]. Byulleten' Pochvennogo instituta imeni V. V. Dokuchaeva [V.V. Dokuchaev Soil Bulletin], no. 104, pp. 110-157, https:doi.org/10.19047/0136-1694-2020-104-110-157. (In Russian).

15. Lobanov A.I., Savost'yanov V.K., Pimenov A.V., 2015. Deflyatsiya pochv i agrolesomeliorativnye meropriyatiya na yuge Sredney Sibiri (k 55-letiyu organizatsii Khakasskogo protivoerozionnogo statsionara Instituta lesa im. V. N. Sukacheva SO RAN) [Soil deflation and agricultural afforestation measures in the south of Central Siberia (to the 55th anniversary of Khakass erosion-preventive station of V. N. Sukachev Forest Institute SB RAS)]. Sibirskiy lesnoy zhurnal [Siberian Forest Journal], no. 1, pp. 105-117. (In Russian).

16. Mabit L., Meusburger K., Iurian A.R., Owens P.N., Toloza A., Alewell C., 2014. Sampling soil and sediment depth profiles at a fine-resolution with a new device for determining physical, chemical and biological properties: the Fine Increment Soil Collector (FISC). Journal of Soils and Sediments, vol. 14(3), pp. 630-636, https:doi.org/10.1007/s11368-013-0834-8.

17. Fulajtar E., Mabit L., Renschler C.S., Lee Zhi Yi A., 2017. Use of 137Cs for soil erosion assessment. Food and Agriculture Organization of the United Nations. Rome, 64 p.

18. Zížala D., Juřicová A., Zádorová T., Zelenková K., Minařík R., 2019. Mapping soil degradation using remote sensing data and ancillary data: South-East Moravia, Czech Republic. European Journal of Remote Sensing, vol. 52, pp. 108-122, DOI: 10.1080/22797254.2018.1482524.

19. Wang W., Samat A., Ge Y., Ma L., Tuheti А., Zou S., Abuduwaili J., 2020. Quantitative soil wind erosion potential mapping for Central Asia using the Google Earth Engine platform. Remote Sensing, vol. 12, iss. 20, 3430, https:doi.org/10.3390/rs12203430.

20. Kouchami-Sardoo I., Shirani H., Esfandiarpour-Boroujeni I., Besalatpour A.A., Hajabbasi M.A., 2020. Prediction of soil wind erodibility using a hybrid Genetic algorithm – Artificial neural network method. Catena, vol. 187, 104315, https:doi.org/10.1016/j.catena.2019.104315.

21. Kulik K.N., 2022. Sovremennoe sostoyanie zashchitnykh lesonasazhdeniy v Rossiyskoy Federatsii i ikh rol' v smyagchenii posledstviy zasukh i opustynivaniya zemel' [The current state of protective forest plantations in the Russian Federation and their role in mitigating the consequences of droughts and land desertification.]. Nauchno-agronomicheskiy zhurnal [Scientific Agronomy Journal], no. 3(118), pp. 8-13, DOI: 10.34736/FNC.2022.118.3. 001.08-13. (In Russian).

22. Barabanov A.T., Petelko A.I., Panov V.I., Kulik A.V., Gordienko O.A., Shaifulin M.R., 2021. Ot osnov protivoerozionnoy melioratsii shkoly A. S. Kozmenko – G. P. Surmacha k sovremennym sistemam adaptivno-landshaftnogo zemledeliya (istoriya eroziovedeniya vo VNIALMI) [From the basics of anti-erosion reclamation of A. S. Kozmenko – G. P. Surmach school to contemporary systems of adaptive landscape farming (history of erosion science at VNIALMI)]. Nauchno-agronomicheskiy zhurnal [Scientific Agronomy Journal], no. 3(114), pp. 6-19, DOI: 10.34736/FNC.2021.114.3.001.6-19. (In Russian).

23. Panov V.I., 2021. Optimizatsiya sootnosheniya osnovnykh landshaftnykh ugodiy (klasterov) v basseynovom agroekolandshafte stepnogo zasushlivogo poyasa Rossii [Optimization of the ratio of the main landscape areas (clusters) in the basin agroecolandscape of the steppe arid belt of Russia]. Nauchno-agronomicheskiy zhurnal [Scientific Agronomy Journal], no. 2, pp. 6-17, DOI: 10.34736/FNC.2021.113.2.001. (In Russian).

24. Poluektov E.V., 2020. Eroziya pochv i plodorodie: monografiya [Soil Erosion and Fertility: monograph]. Novocherkassk Reclamation Engineering Institute of Don State Agrarian University, Novocherkassk, Lik Publ., 229 p. (In Russian).

25. Ivonin V.M., 2019. [Forest landscape reclamation potential analysis]. Nauchnyy zhurnal Rossiyskogo NII problem melioratsii, no. 2(34), pp. 51-67, available: http:www.rosniipm-sm.ru/article?n=970 [accessed 21.02.2023], DOI: 10.31774/2222-1816-2019-2-51-67. (In Russian).

26. Poluektov E.V., Balakay G.T., Kulaeva Ya.I., 2020. Poteri pochvy ot deflyatsii na obyknovennykh chernozemakh Rostovskoy oblasti [Soil losses from deflation on ordinary chernozems of Rostov region]. Puti povysheniya effektivnosti oroshaemogo zemledeliya [Ways of Increasing the Efficiency of Irrigated Agriculture], no. 4(80), pp. 52-59. (In Russian).

27. Kan N.A. [et al.], 1985. Programmirovanie tekhnologii vozdelyvaniya sel'skokhozyaystvennykh kul'tur na oroshaemykh zemlyakh Severnogo Kavkaza: rekomendatsii [Programming the Technology of Cultivating Agricultural Crops on Irrigated Lands of North Caucasus: recommendations]. Rostov-on-Don, Rostov Book Publ., 120 p. (In Russian).

28. Turulev V.K. [et al.], 1987. Zonal'nye sistemy oroshaemogo zemledeliya Rostovskoy oblasti: monografiya [Zonal Systems of Irrigated Agriculture in Rostov Region: monograph]. Rostov-on-Don, Rostov Book Publ., 128 p. (In Russian).

29. Babichev A.N., Balakay G.T., Monastyrsky V.A., 2017. [Operational control of the irrigation regime when programming the productivity of agricultural crops]. Nauchnyy zhurnal Rossiyskogo NII problem melioratsii, no. 3(27), pp. 83-96, available: http:www.rosniipm-sm.ru/article?n=285 [accessed 21.02.2023]. (In Russian).

30. Evseeva N.S., Kvasnikova Z.N., Kashiro M.A., Volkova M.A., Nosyreva O.V., 2021. Vetrovoy rezhim yugo-vostoka Zapadno-Sibirskoy ravniny kak faktor riska razvitiya deflyatsii pochv v agrolandshaftakh (na primere yuga Tomskoy oblasti) [Wind regime of the southeast of the West Siberian Plain as a risk factor for the development of soil deflation development in agricultural landscapes (the case of the South of Tomsk region)]. Izvestiya RAN. Seriya geograficheskaya [Bulletin RAS. Geographic Series], vol. 85, no. 4, pp. 528-538, DOI: 10.31857/S258755662104004X. (In Russian).

Download