Founder and publisher – Russian Scientific Research Institute of Land Improvement Problems
Land Reclamation and Hydraulic Engineering Melioraciâ i gidrotehnika
ISSN 2712-9357
RUS / ENG

MODELING THE SLOPE STABILITY ON THE LOW-HEAD DAM OF THE OKTYABRSKY RESERVOIR DURING CLIMATIC CHANGES IN THE HYDROLOGICAL REGIME

Annotation

Purpose: modeling the slope stability of a low-head dam using the finite element method based on the example of the long-operated Oktyabrsky Reservoir. 

Materials and methods. The main attention is paid to studying the impact of the hydrological regime on strength and durability of the low-head dam structure. Sharp alternation of wet and dry periods creates additional stress in the body of the low-head earth dam of the Oktyabrsky Reservoir. The research methodology is based on a combination of finite element modeling and field studies. SCAD Office, which is a set of applications for computer-aided design and finite element modeling, was used. Calculations of the dam slope strength were performed, taking into account the dynamic water pressure, filtration processes and mechanical deformations. Additionally, an assessment of the durability of the structure was carried out in changing hydrological regime, including water level fluctuations, flood duration and various periods of low flow rates. 

Results. An integrated approach to modeling the slope stability of a low-head dam under real hydrological changes is proposed. The proposed methods and models are universal and can be used for similar structures in other regions. Radiograms of landslide processes that occurred as a result of accidents and were eliminated during the reconstruction of the dam, were obtained. 

Conclusions. The conducted studies are devoted to assessing the technical condition of the earth low-head dam of the Oktyabrsky Reservoir using engineering and geophysical methods. Finite element modeling was performed based on the obtained data on failures. The maximum dimensions of landslide development that are dangerous for the operation of a low-head dam are established, when a landslide occupies more than 17 % of the dam body in the transverse profile and more than 22 % in the longitudinal profile. Local zones of active development of landslide processes caused by long-term operation, heterogeneity of the soil foundation and the impact of external factors are revealed.

doi: 10.31774/2712-9357-2025-15-3-379-397

Keywords

landslide, low-head dam, finite element modeling, technical condition assessment, climate change

For quoting

Bandurin M. A., Romanova A. S., Poltorak Ya. A., Mukha D. V. Modeling the slope stability on the low-head dam of the Oktyabrsky reservoir during climatic changes in the hydrological regime. Land Reclamation and Hydraulic Engineering. 2025;15(3):379–397. (In Russ.). https://doi.org/10.31774/2712-9357-2025-15-3-379-397.

Authors

M. A. Bandurin – Dean of the Faculty of Hydroreclamation, Doctor of Technical Sciences, Associate Professor, Kuban State Agrarian University named after I. T. Trubilin (350044, Krasnodar Territory, Krasnodar, st. Kalinin, 13), chepura@mail.ru, SPIN-code: 6451-2467, AuthorID: 518464, ORCID: 0000-0002-0986-8848;

A. S. Romanova – Postgraduate Student, Kuban State Agrarian University named after I. T. Trubilin (350044, Krasnodar Territory, Krasnodar, st. Kalinin, 13), any30082002@mail.ru, SPIN-code: 7540-6975, AuthorID: 1159646, ORCID: 0000-0001-9035-917X;

Ya. A. Poltorak – Associate Professor of the Department of Hydraulics and Agricultural Water Supply, Candidate of Technical Sciences, Kuban State Agrarian University named after I. T. Trubilin (350044, Krasnodar Territory, Krasnodar, st. Kalinin, 13), yanpoltorak@gmail.com, SPIN-code: 2304-1472, AuthorID: 1056971, ORCID: 0009-0007-4335-7906;

D. V. Mukha – Student, Kuban State Agrarian University named after I. T. Trubilin (350044, Krasnodar Territory, Krasnodar, st. Kalinin, 13), danilmyxa2018@gmail.com, ORCID: 0009-0000-1458-2361.

Bibliography

1. Bandurin M.A., Volosukhin V.A., Prikhodko I.A., Verbitsky A.Yu., 2023. Eksperimental'noe issledovanie mekhanicheskikh svoystv nizovogo klina nizkonapornoy damby v usloviyakh povysheniya urovnya pavodkovykh vod [Experimental study of mechanical properties of the downstream wedge of a low-head dam under conditions of rising flood water levels]. Construction and Geotechnics, vol. 14, no. 1, pp. 111-122, DOI: 10.15593/2224-9826/2023.1.09, EDN: PQYJUU. (In Russian).

2. Kulakov V.V., Makhinov A.N., Kim V.I., Ostroukhov A.V., 2019. Katastroficheskiy opolzen' i tsunami v vodokhranilishche Bureyskoy GES (basseyn Amura) [A catastrophic landslide and tsunami in the reservoir of the Bureyskaya hydropower plant (the Amur River basin)]. Geoekologiya. Inzhenernaya geologiya, gidrogeologiya, geokriologiya [Geoecology. Engineering Geology, Hydrogeology, Geocryology], no. 3, pp. 12-20, DOI: 10.31857/S0869-78092019312-20, EDN: BVZITZ. (In Russian).

3. Volosukhin Ya.V., 2020. Seysmostoykost' otkosov plotiny i damby Bakhchisarayskogo vodokhranilishcha v Krymu [Seismic Stability of slopes of dam and levee in the Bakhchisarai Reservoir in Crimea]. Mezhdunarodnyy nauchno-issledovatel'skiy zhurnal [International Research Journal], no. 1(91), part 1, pp. 57-62, DOI: 10.23670/IRJ.2020.91.1.012, EDN: OJUCCH. (In Russian).

4. Shchedrin V.N., Kosichenko Yu.M., Baklanova D.V., Baev O.A., Mikhailov E.D., 2016. Obespechenie bezopasnosti i nadezhnosti nizkonapornykh gidrotekhnicheskikh sooruzheniy: monografiya [Ensuring the Safety and Reliability of Low-Pressure Hydrotechnical Structures: monograph]. Novocherkassk, RosNIIPM, 283 p., ISBN: 978-5-9907461-5-2, EDN: WUYTAT. (In Russian).

5. Prikhodko I.A., Bandurin M.A., Volosukhin V.A., Verbitsky A.Yu., 2023. Primenenie chislennogo modelirovaniya dlya rascheta vetrovogo volneniya na Kryukovskom vodokhranilishche [Using numerical modeling for calculation of wind waves at the Kryukovskiy Reservoir]. Melioratsiya i gidrotekhnika [Land Reclamation and Hydraulic Engineering], vol. 13, no. 2, pp. 353-378, DOI: 10.31774/2712-9357-2023-13-2-353-378, EDN: FCUZXF. (In Russian).

6. Kosichenko Yu.M., Talalaeva V.F., 2021. Ekspluatatsiya i ispol'zovanie Proletar-skogo vodokhranilishcha [The Proletarskiy Reservoir operation and usage]. Melioratsiya i gidrotekhnika [Land Reclamation and Hydraulic Engineering], vol. 11, no. 4, pp. 346-359, DOI: 10.31774/2712-9357-2021-11-4-346-359, EDN: MXCCOB. (In Russian).

7. Tkachev A.A., Anoshin A.M., 2021. Rekonstruktsiya Novotroitskogo vodokhranilishcha v Stavropol'skom krae [Reconstruction of the Novotroitskiy Reservoir in Stavropol Territory]. Melioratsiya i gidrotekhnika [Land Reclamation and Hydraulic Engineering], vol. 11, no. 4, pp. 302-315, DOI: 10.31774/2712-9357-2021-11-4-302-315, EDN: ICYRZY. (In Russian).

8. Ivankova T.V., Kipkeeva P.A., Potapenko Yu.Ya., 2018. Prirodno-khozyaystvennye struktury malykh rechnykh basseynov gornogo rel'efa i puti ikh razvitiya: innovatsii, optimizatsiya ili restavratsiya [Natural and economic structures of small river basins in mountainous terrain and ways for their development: innovation, optimization or restoration]. Vestnik Akademii nauk Respubliki Bashkortostan [Bullet. of the Academy of Sciences of the Republic of Bashkortostan], vol. 26, no. 1(89), pp. 67-75, EDN: OSNIXX. (In Russian).

9. Bandurin M.A., Volosukhin V.A., Prikhodko I.A., Rudenko A.A., 2022. Monitoringovaya otsenka nizkonapornoy zemlyanoy plotiny Varnavinskogo vodokhranilishcha v usloviyakh povyshayushchegosya riska prirodnykh i tekhnogennykh katastrof [Monitoring assessment of the low-head earthen dam of the Varnavinsky reservoir under conditions of an increasing risk of natural and man-made disasters]. Construction and Geotechnics, vol. 13, no. 4, pp. 17-29, DOI: 10.15593/2224-9826/2022.4.02, EDN: QWBLEE. (In Russian).

10. Abdrazakov F.K., Degtyarev V.G., Kozhenko N.V., 2021. Analiz osnovaniya meliorativnoy plotiny pri rabote v naporno-peremennom rezhime [Analysis of the base of a reclamation dam when operating in a pressure variable mode]. Agrarnyy nauchnyy zhurnal [Agrarian Scientific Journal], no. 8, pp. 82-86, DOI: 10.28983/asj.y2021i8pp82-86, EDN: FPQYCS. (In Russian).

11. Degtyareva O.G., 2016. Issledovanie zhestkostnykh kharakteristik gravitatsionnoy i kontrforsnoy plotin posredstvom analiza sobstvennykh kolebaniy [Research of stiffness characteristics of gravity and of buttress weir on facilities of analysis of eigentones]. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta [Proceed. of Kuban State Agrarian University], no. 63, pp. 169-177, DOI: 10.21515/1999-1703-63-169-177, EDN: YLPTEB. (In Russian).

12. Sukhinov A.I., Sidoryakina V.V., Protsenko E.A., 2021. Hydrodynamic wave processes numerical modeling in the coastal recreational zone of the Tsimlyansk reservoir. Computational Mathematics and Information Technologies, vol. 1, no. 1, pp. 36-43, DOI: 10.23947/2587-8999-2021-1-1-36-43, EDN: CTRRCP.

13. Abdrazakov F.K., Orlova S.S., Pankova T.A., Mirkina E.N., Fedyunina T.V., 2018. The monitoring of condition of hydraulic structures. Journal of Advanced Research in Dynamical and Control Systems, vol. 10, no. 13, pp. 1952-1958, EDN: EHGFNC.

14. Pogorelov A.V., Laguta A.A., Kuzyakina M.V., 2022. Geomorfologicheskie aspekty preobrazovaniya krupnogo ravninnogo vodokhranilishcha (po dannym izmereniy na Krasnodarskom vodokhranilishche) [Geomorphological aspects of the transformation of a large plain reservoir (according to measurements at the Krasnodar reservoir)]. InterKarto. InterGIS [InterCarto. InterGIS], vol. 28, no. 2, pp. 536-551, DOI: 10.35595/2414-9179-2022-2-28-536-551, EDN: GSKZWN. (In Russian).

15. Volosukhin V.A., Bandurin M.A., Prikhodko I.A., Evteeva I.D., 2022. Imitatsionnoe modelirovanie ustoychivosti ograditel'nykh damb reki Psekups v usloviyakh vozrastayushchikh staticheskikh i seysmicheskikh vozdeystviy [Simulation modeling of stability of Psecups river protective dams under increasing static and seismic impacts]. Mezhdunarodnyy sel'skokhozyaystvennyy zhurnal [International Agricultural Journal], no. 5(389), pp. 459-463, DOI: 10.55186/25876740_2022_65_5_459, EDN: JCHJKA. (In Russian).

16. Kondratieva L.M., Makhinov A.N., Kim V.I., 2021. Ekologicheskie posledstviya krupnogo opolznya na poberezh'e Bureyskogo vodokhranilishcha [Ecological consequences of a large landslide on the coast of the Bureya Reservoir]. Geografiya i prirodnye resursy [Geography and Natural Resources], vol. 42, no. 4, pp. 58-66, DOI: 10.15372/GIPR20210406, EDN: PAORHA. (In Russian).

17. Belolipetskii V.M., Belolipetskii P.V., Genova S.N., 2018. Numerical Modelling of the Hydrothermal Regime of the Krasnoyarsk Reservoir. Journal of Siberian Federal Universit. Mathematics and Physics, vol. 11, no. 5, pp. 569-580, DOI: 10.17516/1997-1397-2018-11-5-569-580, EDN: YMKFFZ.

18. Pryakhina G.V., Boronina A.S., Popov S.V., Rasputina V.A., Voinarovsky A.E., 2019. Fizicheskoe modelirovanie razrusheniya gruntovoy damby vodokhranilishcha v protsesse perepolneniya vodoema [Physical modeling of the destruction of a reservoir ground dam in consequence of the overflow of water body]. Izvestiya Russkogo geograficheskogo obshchestva [Proceed. of the Russian Geographical Society], vol. 151, no. 2, pp. 51-63, DOI: 10.31857/S0869-6071151251-63, EDN: ZFBDIL. (In Russian).

19. Sajjkosimov S.S., Raimdzhanov B.R., Umarov F.Ya., Rakhimova M.Kh., 2023. Prognoznaya otsenka napryazhenno-deformirovannogo sostoyaniya damb khvosto-khranilishch na baze prostranstvennoy konechno-elementnoy modeli [Predictive assessment of the stress-strain state of tailings dams based on a spatial finite element model]. Gornyy informatsionno-analiticheskiy byulleten' (nauchno-tekhnicheskiy zhurnal) [Mining Information and Analytical Bulletin], no. 9, pp. 38-55, DOI: 10.25018/0236_1493_2023_9_0_38, EDN: EFMOCM. (In Russian).

Funding

the study was supported by the grant of the Russian Science Foundation and the Kuban Science Foundation No. 24-26-20003.

Download