Founder and publisher – Russian Scientific Research Institute of Land Improvement Problems
Land Reclamation and Hydraulic Engineering Melioraciâ i gidrotehnika
ISSN 2712-9357
RUS / ENG

JUSTIFICATION OF THE DESIGN OF IRRIGATION MODULE OF DRIP IRRIGATION SYSTEM FOR ORCHARDS

Annotation

Purpose: to determine the parameters and justification of the design of the irrigation module of the drip irrigation system for orchards. 

Materials and methods. Typical crop planting patterns in an orchard, microclimatic, soil and technological conditions of drip irrigation are considered as initial factors. The results of the study were obtained in the process of methods and recommendations generalizing for predicting the technological parameters of a drip irrigation network.

Results and discussion. As a result of the research, a methodology to justify the design of the irrigation module, which provides for establishing: the area of the crop nutrition zone; coefficient determining the area of the nutrition zone to be moistened; diameter and area of the horizontal projection of the soil moisture contour; the number of moisture contours and emitters ensuring their formation; diagrams for placing emitters in the plant nutrition zone was developed. As a criterion for choosing the design of an irrigation module, the ratio of the area of moistened soil space required for cultivating plants and the area of drip soil moisture zones formed by the irrigation module is taken. The methodology was tested on an irrigation module in single- and double-line versions.

Conclusions. A single-line irrigation module meets the needs of perennial fruit crops in areas with a natural moisture coefficient of 1.0, and in rare combinations of conditions with a coefficient of 0.8. The double-line irrigation module consistently provides the required soil moisture area in areas with a natural moisture coefficient ≥ 0.6 and cannot form the required moisture area for the nutrition zone of fruit crops in areas with a moisture coefficient of 0.4. For drip irrigation of perennial fruit crops in areas with a moisture coefficient ≤ 0.6, it is proposed to use an irrigation module with three drip lines.

doi: 10.31774/2712-9357-2024-14-2-32-54

Keywords

orchard, nutrition area, drip irrigation, irrigation module, soil conditions, soil moisture contour, territory moisture coefficient

For quoting

Shtanko A. S., Shkura V. N. Justification of the design of irrigation module of drip irrigation system for orchards. Land Reclamation and Hydraulic Engineering. 2024;14(2):32–54. (In Russ.). https://doi.org/10.31774/2712-9357-2024-14-2-32-54.

Authors

A. S. Shtanko – Leading Researcher, Candidate of Technical Sciences, Russian Scientific Research Institute of Land Improvement Problems, Novocherkassk, Russian Federation, shtanko.77@mail.ru, ORCID ID: 0000-0002-6699-5245;

V. N. Shkura – Leading Researcher, Candidate of Technical Sciences, Professor, Russian Scientific Research Institute of Land Improvement Problems, Novocherkassk, Russian Federation, VNShkura@yandex.ru, ORCID ID: 0000-0002-4639-6448.

Bibliography

1. Khrabrov M.Yu., Gubin V.K., Kolesova N.G., 2016. Opredelenie tekhnologicheskikh parametrov sistem kapel'nogo orosheniya [Determination of technological parameters of drip sprinkling systems]. Puti povysheniya effektivnosti oroshaemogo zemledeliya [Ways of Increasing the Efficiency of Irrigated Agriculture], no. 1(61), pp. 132-136, EDN: VRCUDB. (In Russian).

2. Yasonidi O.E., 2011. Kapel'noe oroshenie: monografiya [Drip Irrigation: monograph]. Novocherkassk State Land Reclamation Academy, Novocherkassk, Lik Publ., 322 p., EDN: QLCBEP. (In Russian).

3. Aidarov I.P. [et al.], 1999. Melioratsiya i vodnoe khozyaystvo. Oroshenie: spravochnik [Land Reclamation and Water Management. Irrigation: Reference Book]. Moscow, Kolos Publ., 432 p., EDN: WFINLZ. (In Russian).

4. Ikromov I.I., 2004. Formirovanie konturov i polosy uvlazhneniya pochvy pri raznoy tekhnologii mikroorosheniya [Formation of soil moisture contours and strips at different microirrigation technologies]. Sovremennye energo- i resursosberegayushchie ekologicheski ustoychivye tekhnologii i sistemy sel'skokhozyaystvennogo proizvodstva [Modern Energy- and Resource-Saving Environmentally Sustainable Technologies and Systems of Agricultural Production]. Ryazan, Ryazan State Agrarian University, vol. 8, pp. 240-244. (In Russian).

5. Rogachev A.F., Melikhova E.V., 2021. Komp'yuternoe modelirovanie i parametrizatsiya v srede MathCAD konturov uvlazhneniya pri kapel'nom oroshenii [Computer modeling and parameterization in MathCAD environment of humidification contours for drip irrigation]. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional'noe obrazovanie [Proceedings of Lower Volga Agro-University Complex: Science and Higher Education], no. 4(64), pp. 367-378, DOI: 10.32786/2071-9485-2021-04-37, EDN: VBOPAO. (In Russian).

6. Bulgakov V.I., Kostovarova I.A., Gzhibovsky S.A., Grushin A.V., 2021. Osobennosti rezhima orosheniya i opredeleniya konusa promachivaniya pri kapel'nom oroshenii [Features of irrigation rate and determination of the wetting cone during drip irrigation]. Vestnik meliorativnoy nauki [Bull. of Reclamation Science], no. 3, pp. 67-75, EDN: XHCTNR. (In Russian).

7. Khanieva I.M., Amshokov B.Kh., Shontukov T.Z., 2022. Konstruktivnye i tekhnologicheskie osobennosti primeneniya kapel'noy sistemy orosheniya v usloviyakh neudobiy [Design and technological features of the use of a drip irrigation system under inarable conditions]. Problemy razvitiya APK regiona [Development Problems of Regional Agro-Industrial Complex], no. 3(51), pp. 124-128, DOI: 10.52671/20790996_2022_3_124, EDN: GBLYME. (In Russian).

8. Gubin V.K., Shevchenko V.A., Khrabrov M.Yu., Kudryavtseva L.V., 2022. Sistema kapel'nogo orosheniya mnogoletnikh nasazhdeniy [Drip Irrigation System for Perennial Plantings]. Patent RF, no. 2783181, EDN: PBGGSJ. (In Russian).

9. Karimi B., Karimi N., Shiri J., Sanikhani H., 2022. Modeling moisture redistribution of drip irrigation systems by soil and system parameters: regression-based approaches. Stochastic Environmental Research and Risk Assessment, no. 36, pp. 157-172, https:doi.org/10.1007/s00477-021-02031-y.

10. Solat S., Alinazari F., Maroufpoor E., Shiri J., Karimi B., 2021. Modeling moisture bulb distribution on sloping lands: Numerical and regression-based approaches. Journal of Hydrology, no. 601, 126835, https:doi.org/10.1016/j.jhydrol.2021.126835.

11. Shtanko A.S., Shkura V.N., 2021. [Double-line irrigation module for drip irrigation of some woody fruit plants cultivated in garden plantings]. Melioratsiya i gidrotekhnika, vol. 11, no. 4, pp. 49-66, available: http:www.rosniipm-sm.ru/article?n=1237 [accessed 15.01.2024], DOI: 10.31774/2712-9357-2021-11-4-49-66, EDN: UIKEUW. (In Russian).

12. Shtanko A.S., 2022. Kolichestvo i rasstanovka kapel'nykh vodovypuskov pri oroshenii plodovykh sadov [The number and arrangement of drip emitters by irrigating orchards]. Puti povysheniya effektivnosti oroshaemogo zemledeliya [Ways of Increasing the Efficiency of Irrigated Agriculture], no. 1(85), pp. 114-120, EDN: NUGFSG. (In Russian).

13. Shtanko A.S., Udovidchenko Ya.E., 2020. [Geometry of root systems of apple plants growing on irrigated sloping lands]. Nauchnyy zhurnal Rossiyskogo NII problem melioratsii, no. 1(37), pp. 80-104, available: http:www.rosniipm-sm.ru/archive?n=646&id=652 [accessed 15.01.2024], DOI: 10.31774/2222-1816-2020-1-87-104, EDN: XBGDVN. (In Russian).

Download