Founder and publisher – Russian Scientific Research Institute of Land Improvement Problems
Land Reclamation and Hydraulic Engineering Melioraciâ i gidrotehnika
ISSN 2712-9357
RUS / ENG

EROSION SIGNS FEATURES WITHIN GULLY-RAVINE CATCHMENT 

Annotation

Purpose: to determine patterns of formation of hydrographic network elements depending on the melt-and rainwater runoff and soil losses. 

Materials and methods. The studies were carried out in the upper reaches of the Bolshoy Log gully system, which is a part of the land use of the experimental farm “Polevoy” of the Federal Rostov Agrarian Research Center, with an area of 2070 hectares, of which more than 70 % is arable land. Soils are ordinary chernozems of varying degrees of erosion. The standard methods of research and the method of pins were used on runoff plots. 

Results. Within the catchment area, the amount of runoff and hydraulic indicators of water courses are greatly influenced by the agricultural background and the soil surface condition from which meltwater flows, and the intensity of erosion processes is influenced by the depth of soil freezing, the moisture content of topsoil, water storage in snow, snowmelt intensity. The water sprays are concentrated along the gullies, where the soil is washed out over time, and they pass into the category of hollows, then into ravines and gullies, forming a hydrographic network in the gully-ravine catchment area. The most intensive meltwater runoff was observed over the years: in 1988 – 33.8 mm, 2003 – 63.9 mm, 2006 – 24.6 mm, 2014 – 14.3 mm, 2017 – 19.3 mm, 2023 – 10–14 mm. In the variants with reclamation protective forest plantations and hydraulic structures, the runoff was 5–12 mm less than in the control and it retained in the forest belt. The mathematical data analysis made it possible to determine the relationship between the runoff rate and soil loss in the gully-ravine catchment, depending on the distance from the watershed. 

Conclusions. On the gully-ravine catchment, the sheet wash smoothly turns into a linear one and forms hollows and valleys. The final link of the catchment area are ravines and gullies. During the peak periods of meltwaters, the water flow velocity on flat sections of the slope is 0.33–0.46 m/s, and along the hollows – 0.57–0.83 m/s. 

doi: 10.31774/2712-9357-2023-13-3-48-68

Keywords

erosion, hollows, ravines, surface runoff, melt- and rain water, soil loss, soil condition 

For quoting

Poluektov E. V., Balakay G. T. Erosion signs features within gully-ravine catchment. Land Reclamation and Hydraulic Engineering. 2023;13(3):48–68. (In Russ.). https://doi.org/10.31774/2712-9357-2023-13-3-48-68.

Authors

E. V. Poluektov – Head of the Chair of Soil Science, Irrigated Agriculture and Geodesy, Doctor of Agricultural Sciences, Professor, Novocherkassk Engineering and Land Reclamation Institute – branch of the Don State Agrarian University, Novocherkassk, Russian Federation, rekngma@magnet.ru

G. T. Balakay – Chief Researcher, Doctor of Agricultural Sciences, Professor, Russian Scientific Research Institute of Land Improvement Problems, Novocherkassk, Russian Federation, balakaygt@rambler.ru

Bibliography

1. Shchedrin V.N., Balakay G.T., Poluektov E.V., Balakay N.I., 2016. Usloviya formirovaniya poverkhnostnogo stoka. Prognoz prichinyaemogo ushcherba. Kompensatsionnye meliorativnye meropriyatiya [The Conditions of Formation of Surface Runoff. The Forecast of the Damage Caused. Compensatory Reclamation Measures]. Novocherkassk, RosNIIPM, 450 p. (In Russian).

2. Izvekov A.S., 2012. Zashchita pochv ot erozii i vosproizvodstvo plodorodiya v yuzhnykh i lesostepnykh rayonakh Rossii [Protection of eroded soils and the fertility recovery within the dry-steppe and forest-steppe zones of Russia]. Byulleten' Pochvennogo instituta im. V. V. Dokuchaeva [Dokuchaev Soil Bulletin], no. 70, pp. 79-95. (In Russian).

3. Poluektov E.V., Balakai G.T., Tishchenko A.P., 2022. [Storm erosion on ordinary chernozem]. Melioratsiya i gidrotekhnika, vol. 12, no. 3, pp. 29-43, available: http:www.rosniipm-sm.ru/article?n=1291 [accessed 22.03.2023], https:doi.org /10.31774 /2712-9357-2022-12-3-29-43. (In Russian).

4. Poluektov E.V., Balakay G.T., 2023. [Erosion processes during the melt water runoff in the south of the European part of Russia]. Melioratsiya i gidrotekhnika, vol. 13, no. 1, pp. 1-18, available: http:www.rosniipm-sm.ru/article?n=1337 [accessed 22.03.2023], https:doi.org/10.31774/2712-9357-2023-13-1-1-18. (In Russian).

5. Akperova U.Z., 2020. Eroziya pochvy vodoy i mery borby s ney [Water erosion and struggle measures against it]. Evraziyskiy soyuz uchenykh [Eurasian Union of Scientists], no. 8(77), pp. 45-51, DOI: 10.31618/ESU.2413-9335.2020.5.77.986. (In Russian).

6. Dzharullaev A.Sh., Mardanov I.I., Ismailova A.A., Eldarov N.Sh., 2018. Erozionnaya opasnost pochv pastbishch Bolshogo Kavkaza i Dzheyranchel-Adzhinoura [The soil erosion risk of the Greater Caucasus and Dzheyranchel-Adzhinour Pastures]. Geograficheskiy vestnik [Geographical Bulletin], no. 3(46), pp. 75-82, DOI: 10.17072/2079-7877-2018-3-75-82. (In Russian).

7. Pimentel D., Burgess M., 2013. Soil erosion threatens food production. Agriculture, 3(3), pp. 443-463, https:doi.org/10.3390/agriculture3030443.

8. Nguyen Х.Н., Pham A.H., 2018. Assessing soil erosion by agricultural and forestry production and proposing solutions to mitigate: A case study in Son La province, Vietnam. Applied and Environmental Soil Science, vol. 2018, 2397265, https:doi.org/10.1155/2018/2397265.

9. Pham G., Degener J., Kappas M., 2018. Integrated universal soil loss equation (USLE) and Geographical Information System (GIS) for soil erosion estimation in A Sap basin: Central Vietnam. International Soil and Water Conservation Research, vol. 6, iss. 2, pp. 99-110, https:doi.org/10.1016/j.iswcr.2018.01.001.

10. Shevchenko D.A., Sivokon Yu.V., 2015. Vliyanie stoka talykh vod na vodnuyu eroziyu pochvy [Influence of melt water runoff on water erosion]. Mezhdunarodnyy nauchno- issledovatelskiy zhurnal [International Scientific Research Journal], no. 7(38), available: https:research-journal.org/archive/7-38-2015-august/vliyanie-stoka-talyx-vod-na-vodnuyu-eroziyu-pochvy [accessed 22.03.2023]. (In Russian).

11. Maltsev K.A., Ermolaev O.P., 2019. Potentsial'nye erozionnye poteri pochvy na pakhotnykh zemlyakh evropeyskoy chasti Rossii [Potential soil loss from erosion on arable lands in the European part of Russia]. Pochvovedenie [Soil Science], no. 12, pp. 1502-1512, DOI: 10.1134/S0032180X19120104. (In Russian).

12. Naletov N.B. (comp.), 2022. Eroziya pochvy i bor'ba s ney: bibliogr. ukaz. lit. za 1977–2022 gg. [Soil Erosion and Its Control: bibliography for 1977–2022]. Moscow, 105 p. (In Russian). 

13. Soldat I.E., 2020. Snizhenie negativnogo vliyaniya erozii pochv v Belgorodskoy oblasti vnedreniem adaptivno-landshaftnoy sistemy zemledeliya [Reducing the negative impact of soil erosion in the Belgorod region through adaptive-landscape farming system]. Vestnik Rossiyskogo universiteta druzhby narodov. Seriya: Agronomiya i zhivotnovodstvo [RUDN Journal of Agronomy and Animal Industries], vol. 15, no. 2, pp. 182-190, DOI: 10.22363/2312-797X-2020-15-2-182-190. (In Russian).

14. Komissarov M.A., Klik A., 2020. Vliyanie nulevoy, minimal'noy i klassicheskoy obrabotok na eroziyu i svoystva pochv v Nizhney Avstrii [The impact of no-till, conservation, and conventional tillage systems on erosion and soil properties in Lower Austria]. Pochvovedenie [Soil Science], no. 4, pp. 473-482, DOI: 10.31857/S0032180X20040073. (In Russian).

15. Tsybulko N.N., 2019. Adaptivnoe ispol'zovanie erodirovannykh pochv Belarusi [Adaptive use of eroded soils of Belarus]. Aktual'nye problemy ustoychivogo razvitiya agroekosistem (pochvennye, ekologicheskie, biotsenoticheskie aspekty): materialy Vserossiyskoy s mezhdunar. uchastiem nauchnoy konferentsii, posvyashchennoy 60-letiyu lab. agroekologii Nikitskogo botanicheskogo sada [Actual Problems of Sustainable Development of Agroecosystems (Soil, Ecological, Biocenotic Aspects): Proc. of All-Russian Scientific Conference with international participation, dedicated to the 60th anniversary of Laboratory of agroecology of Nikitskiy Botany Garden]. National scientific center of the Russian Academy of Sciences, Simferopol, Arial Publ., pp. 295-299. (In Russian).

16. Ustinov M.T., Glistin M.V., 2020. Adaptivno-landshaftnaya diagnostika i otsenka sostoyaniya struktury pochvennogo pokrova melioriruemykh territoriy metodom transekt-katenirovaniya [Adaptive landscape diagnostics and assessment of the state of the soil cover structure of reclaimed territories by transect catenation method]. Melioratsiya i vodnoe khozyaystvo [Land Reclamation and Water Management], no. 6, pp. 24-27. (In Russian).

17. Gurbanov G.Ya., Gasanov M.G., Mustafaev R.M., Mamedov Z.V., 2022. Issledovanie tekhnologii zashchity pochvy ot erozii [Research of soil protection technology from erosion]. Agrarnyy nauchnyy zhurnal [The Agrarian Scientific Journal], no. 6, pp. 88-90, DOI: 10.28983/asj.y2022i6pp88-90. (In Russian).

18. Mudarisov S.G., Rakhimov Z.S., 2020. Vliyanie tekhnicheskikh sredstv i technologiy na mekhanicheskuyu eroziyu pochvy na sklonakh [Impact of the influence of technical means and technologies on mechanical soil erosion on slopes]. Sel'skokhozyaystvennye mashiny i tekhnologii [Agricultural Machinery and Technologies], vol. 14, no. 2, pp. 17-22, https:doi.org/10.22314/2073-7599-2020-14-2-17-22. (In Russian).

19. Gulyuk G.G., Balakay G.T., Babichev A.N., 2018. [To the problem of developing a new express method for determining the volume and mass of soil washed away as a result of water erosion]. Nauchnyy zhurnal Rossiyskogo NII problem melioratsii, no. 4(32), pp. 20-37, available: http:www.rosniipm-sm.ru/article?n=951 [accessed 22.03.2023], DOI: 10.31774/2222-1816-2018-4-20-37. (In Russian).

20. Samofalova I.A., 2020. Diagnostika erodirovannosti pochv s ispol'zovaniem sovremennykh podkhodov k interpretatsii parametrov granulometricheskogo sostava [Diagnosis of soil erosion index using modern approaches to the interpretation of data on the granulometric composition]. Zemledelie [Farming], no. 1, pp. 14-19, DOI: 10.24411/0044-3913-2020-10104. (In Russian).

21. Samokhvalova E.V., Zudilin S.N., 2020. Geoprostranstvennyy analiz i otsenka degradatsii sel'skokhozyaystvennykh ugodiy Samarskoy oblasti pod deystviem erozionnykh protsessov [Geospatial analysis and assessment of agricultural land degradation degree in Samara region as a result of erosion processes]. Mezhdunarodnyy sel'skokhozyaystvennyy zhurnal [International Agricultural Journal], no. 4, pp. 8-13, DOI: 10.24411/2587-6740-2020-14062. (In Russian).

22. Kostin I.G., Malysheva E.S., 2020. Monitoring osnovnykh parametrov plodorodiya pochv s primeneniem geoinformatsionnykh sistem [Monitoring of basic parameters of soil fertility using geoinformation systems]. Vestnik Kazanskogo gosudarstvennogo agrarnogo universiteta [Bulletin of Kazan State Agrarian University], no. 2(58), pp. 96-101, DOI: 10.12737/2073-0462-2020-96-101. (In Russian).

23. Ivonin V.M., 2018. Lesomelioratsiya landshaftov: uchebnik [Forest Landscapes Reclamation: textbook]. Novocherkassk, Lik Publ., 206 p. (In Russian).

Download