Founder and publisher – Russian Scientific Research Institute of Land Improvement Problems
Land Reclamation and Hydraulic Engineering Melioraciâ i gidrotehnika
ISSN 2712-9357
RUS / ENG

SOIL LOSS FROM DEFLATION IN ROSTOV REGION

Annotation

Purpose: collection, analysis and generalization of data on wind speed and the intensity of deflation processes in Rostov region, that helps assessing the quantitative side of soil loss depending on wind speed, weather conditions, terrain, tillage method and other factors, and development of wind corridors for the conditions of the region under consideration.

Materials and methods. The research was carried out on chestnut soils, southern and ordinary chernozems of the agricultural enterprise “Rassvet” of Aksai district and the agricultural enterprise “Krasnoarmeyskoe” of Oryol district of Rostov region, and the results of other scientists, who have been conducting research in Rostov region since 1969, were analyzed and summarized. Wind speed was measured with anemometers at a height of 2 m above the soil level, and the soil mass moved by winds was determined by the Erosion bridge (pin method) and dust collectors of our own design. Methods of analysis and synthesis as a systematic approach to achieving the goal were used.

Results. The wind direction and speed in Rostov region depend on the seasonal position of pressure centers: the Siberian maximum in winter and the Azores in summer. Over the 54 years of research from 1969 to 2023, dust storms and drifting snow were observed 11 times, i.e. once every five years. Mathematical processing of long-term research data made it possible to obtain dependencies for assessing the effect of wind speed on soil removal on average in 1 hour, to determine soil removal coefficients, to propose zoning of the region into five deflationary regions, to develop a map diagram of deflationary zones and wind corridors of Rostov region.

Conclusions. The greatest soil losses in wind-impact directions were in 1969 up to 800–900 t/ha for a duration of 300 h, in 1972 – 170–200 t/ha for a duration of 96 h; in 1984, with a daytime wind speed of 10–14 m/s with gusts of up to 25–30 m/s for a duration of 142 h, soil losses amounted to 218 t/ha.

doi: 10.31774/2712-9357-2023-13-4-97-113

Keywords

deflation, soil removal, soil loss, wind speed, wind corridors, soil erodibility, agricultural landscape

For quoting

Poluektov E. V., Balakay G. T. Soil loss from deflation in Rostov region. Land Reclamation and Hydraulic Engineering. 2023;13(4):97–113. (In Russ.). https://doi.org/10.31774/2712-9357-2023-13-4-97-113.

Authors

E. V. Poluektov – Head of the Chair of Soil Science, Irrigated Agriculture and Geodesy, Doctor of Agricultural Sciences, Professor, Novocherkassk Engineering and Land Reclamation Institute – branch of the Don State Agrarian University, Novocherkassk, Russian Federation, geo@ngma.su, AuthorID: 704329; 

G. T. Balakay – Chief Researcher, Doctor of Agricultural Sciences, Professor, Russian Scientific Research Institute of Land Improvement Problems, Novocherkassk, Russian Federation, rosniipm@yandex.ru, https://orcid.org/0000-0001-8021-6853, AuthorID: 267782.

Bibliography

1. Poluektov E.V., 2020. Eroziya pochv i plodorodie: monografiya [Soil Erosion and Fertility: monograph]. Novocherkassk Land Reclamation Engineering Institute of Don State Agrarian University, Novocherkassk, Lik Publ., 229 p. (In Russian).

2. Fulajtar E., Mabit L., Renschler C.S., Lee Zhi Yi A., 2017. Use of 137Cs for soil erosion assessment. Food and Agriculture Organization of the United Nations, Rome, 64 p.

3. Zížala D., Juřicová A., Zádorová T., Zelenková K., Minařík R., 2019. Mapping soil degradation using remote sensing data and ancillary data: South-East Moravia, Czech Republic. European Journal of Remote Sensing, vol. 52, pp. 108-122, DOI: 10.1080/22797254.2018.1482524.

4. Wang W., Samat A., Ge Y., Ma L., Tuheti A., Zou S., Abuduwaili J., 2020. Quantitative soil wind erosion potential mapping for Central Asia using the Google Earth Engine platform. Remote Sensing, vol. 12, iss. 20, 3430, https:doi.org/10.3390/rs12203430.

5. Kouchami-Sardoo I., Shirani H., Esfandiarpour-Boroujeni I., Besalatpour A.A., Hajabbasi M.A., 2020. Prediction of soil wind erodibility using a hybrid Genetic algorithm – Artificial neural network method. Catena, vol. 187, 104315, https:doi.org/10.1016/j.catena.2019.104315.

6. Borrelli P., Lugato E., Montanarella L., Panagos P., 2017. A new assessment of soil loss due to wind erosion in European agricultural soils using a quantitative spatially distributed modelling approach. Land Degradation & Development, vol. 28, iss. 1, pp. 335-344, DOI: 10.1002/ldr.2588.

7. Petelin A.L., Lepkova T.L., Novikova E.A., Novikov A.A., 2021. Formirovanie statsionarnykh poley kontsentratsiy vybrosov gazovykh zagryazniteley vo vneshney zone vliyaniya predpriyatiy tsvetnoy metallurgii [Building stationary gas emissions concentration fields in the external areas impacted by non-ferrous metal producers]. Tsvetnye metally [Non-Ferrous Metals], no. 12, DOI: 10.17580/tsm.2021.12.03. (In Russian).

8. Petelin A.L., Novikova E.A., Orelkina D.E., 2019. Aerozol'nyy perenos gazovykh vybrosov promyshlennykh predpriyatiy na dal'nie rasstoyaniya [Aerosol transfer of gas emissions from industrial enterprises over long distances]. Voprosy nauki i obrazovaniya [Problems of Science and Education], no. 3, pp. 10-22. (In Russian).

9. Anenberg S., Héroux M.-E., Wothe S., 2016. Otsenka riska dlya zdorov'ya ot zagryazneniya vozdukha – obshchie printsipy [Health Risk Assessment From Air Pollution – General Principles]. Copenhagen, WHO Regional Office for Europe, 30 p., available: https:iris.who.int/bitstream/handle/10665/329679/9789289051354-rus.pdf [accessed 02.11.2021]. (In Russian).

10. Pavlenko D.V., 2021. Struktura opasnykh morfogeneticheskikh protsessov v landshaftakh Kochubeevskogo rayona [Structure of dangerous morphogenetic processes in the landscapes of the Kochubeevsky region]. Molodoy uchenyy [Young Scientist], no. 12(354), pp. 51-55. (In Russian).

11. Abuzaid A.S., El-Shirbeny M.A., Fadl M.E., 2023. A new attempt for modeling erosion risks using remote sensing-based mapping and the index of land susceptibility to wind erosion. Catena, 227, 107130, https:doi.org/10.1016/j.catena.107130.

12. Poluektov E.V., Masny R.S., Balakai G.T., 2023. [Impact of agrotechnical measures and reclamation protective forest plantations on soil deflation in Rostov region]. Melioratsiya i gidrotekhnika, vol. 13, no. 2, pp. 19-38, available: http:www.rosniipm-sm.ru/article?n=1353 [accessed 01.09.2023], https:doi.org/10.31774/2712-9357-2023-13-2-19-38. (In Russian).

13. Khrustalev Yu.N., Vasilenko V.N., Svisyuk I.V., Panov V.D., Larionov Yu.A., 2002. Klimat i agroklimaticheskie resursy Rostovskoy oblasti [Climate and Agroclimatic Resources of Rostov Region]. Rostov-on-Don, Bataysk Book Publ., 184 p. (In Russian).

14. Gryzlov E.V., 1975. Pochvozashchitnaya sistema zemledeliya: monografya [Soil Protection System of Agriculture: monograph]. Rostov-on-Don, 136 p. (In Russian).

15. Poluektov E.V., Balakai G.T., Kulaeva Ya.I., 2020. Poteri pochvy ot deflyatsii na obyknovennykh chernozemakh Rostovskoy oblasti [Soil loss from deflation on ordinary chernozems in Rostov region]. Puti povysheniya effektivnosti oroshaemogo zemledeliya [Ways of Increasing the Efficiency of Irrigated Agriculture], no. 4(80), pp. 52-59. (In Russian).

16. Romanovskaya A.Yu., Savin I.Yu., 2020. Sovremennye metody monitoringa vetrovoy erozii pochv [Modern techniques for monitoring wind soil erosion]. Byulleten' Pochvennogo instituta imeni V. V. Dokuchaeva [Dokuchaev Soil Bulletin], no. 104, pp. 110-157, https:doi.org/10.19047/0136-1694-2020-104-110-157. (In Russian).

17. Baxodirov Z., Mamatkulov A., Nurmatov R., 2022. The latest methods for monitoring wind erosion of soils. Science and Innovation. Series D, vol. 1, iss. 6, https:scientists.uz/view.php?id=1360.

18. Ivonin V.M., 2019. [Analysis of the reclamation potential of the forest-agrarian landscape]. Nauchnyy zhurnal Rossiyskogo NII problem melioratsii, no. 2(34), pp. 51-57, available: http:www.rosniipm-sm.ru/article?n=970 [accessed 01.09.2023], DOI: 10.31774/2222-1816-2019-2-51-67. (In Russian).

19. Mironchenko S.F., Samosledov A.T., 1978. Protivoerozionnyy effekt [Anti-erosion effect]. Sel'skie zori [Rural Dawns], no. 7, pp. 18-19. (In Russian).

20. Mironchenko S.F., Grinko N.I., Trevoga G.F., Grebtsov V.D., 1978. Pochvozashchitnaya tekhnologiya vozdelyvaniya osnovnykh sel'skokhozyaystvennykh kul'tur na zemlyakh, podverzhennykh vetrovoy erozii v Rostovskoy oblasti: rekomendatsii [Soil Protection Technology for Cultivating Main Agricultural Crops on Lands Subject to Wind Erosion in Rostov Region: recommendations]. Persianovka, 48 p. (In Russian).

21. Mironchenko S.F., Trevoga G.F., 1978. K voprosu o zonakh primeneniya tekhnologii ploskoreznoy obrabotki pochvy v Rostovskoy oblasti [On issue of areas of flat-cut soil cultivation technology application in Rostov region]. Priemy povysheniya urozhaynosti selskokhozyaystvennykh kul'tur: sb. statey [Techniques for Increasing Agricultural Crops Yields: collection of articles], vol. 13, iss. 1. Persianovka, pp. 65-68. (In Russian).

22. Mironchenko S.F., Grebtsov V.D., Vasilenko V.N., 1994. Usovershenstvovanie sistemy zemledeliya Oblivskogo rayona Rostovskoy oblasti pri novykh formakh vladeniya zemel'nymi resursami i ikh ispol'zovaniya [Improvement of the agricultural system of the Oblivsky district of the Rostov region with new forms of ownership of land resources and their use]. Biotekhnologiya i proizvodstvo ekologicheski chistoy produktsii sel'skogo khozyaystva [Biotechnology and Production of Environmentally Friendly Agricultural Products]. Persianovka, pp. 74-77. (In Russian).

23. Mironchenko S.F., Grinko N.I., Grebtsov V.D., 1995. Sovershenstvovanie sistemy sevooborotov v khozyaystvakh Oblivskogo rayona v razlichnykh pochvennykh zonakh [Improving the crop rotation system in the farms of Oblivsky region in various soil zones]. Ekologicheskoe sostoyanie i upravlenie plodorodiem agrolandshaftov: sbornik nauchnykh trudov [Ecological State and Management of Agricultural Landscapes Fertility: coll. of scientific papers]. Persianovka, pp. 85-88. (In Russian).

24. Poluektov E.V., 1984. Eroziya pochv na Donu i mery bor'by s ney [Soil Erosion on the Don and Measures to Combat it]. Rostov-on-Don, 161 p. (In Russian).

25. Bezuglova O.S., Khyrkhyrova M.M., 2008. Pochvy Rostovskoy oblasti [Soils of Rostov Region]. Rostov-on-Don, 352 p. (In Russian).

Download