Founder and publisher – Russian Scientific Research Institute of Land Improvement Problems
Land Reclamation and Hydraulic Engineering Melioraciâ i gidrotehnika
ISSN 2712-9357
RUS / ENG

MATHEMATICAL ANALYSIS OF THE INFLUENCE OF SOIL MASS MOISTURE ON THE DYNAMICS OF CHANGES IN HORIZONTAL LANDSLIDE CREST DISPLACEMENTS

Annotation

Purpose: to identify the dynamics of changes in horizontal landslide crest displacements with changing soil moisture content in mountainous and foothill areas. 

Materials and methods. A simulation landslide model was developed using the Midas GTX NX finite element software package. wxMaxima program was used for the mathematical analysis of the obtained dependencies and for identifying slope state change functions. Response functions were obtained for the mathematical model of horizontal displacements Sx (mm), along the landslide crest length L (m), with varying soil moisture content W (%). 

Results. The analysis of the mathematical model and the response function for the largest constant landslide crest length L (m), F₃(10.64; y) and the lowest massif moisture content W = 10 % allows recording a positive value of horizontal displacement Sx = 0.0157 mm. With a further increase in the soil mass moisture content W, the horizontal displacement Sx will decrease and initially reach a zero value Sx = 0.0 mm at a moisture content W = 11.23 %, and then tend to an extremum along the negative maximum equal to Sx = –0.042 mm, which it will reach at a moisture content W = 19.18 %. A further increase in soil moisture will again ensure a stable approach of the function to zero, Sx = 0.0 mm, which occurs at a moisture content of W = 26.82 %. The displacement will then tend toward positive values and, at the highest moisture content of 36 %, will reach a positive value for this section, equal to Sx = +0.159 mm. 

Conclusions. According to the conducted research, it was found that when soil moisture content changes from 10 to 18 %, horizontal displacements remain virtually unchanged. However, when soil moisture content changes to 36 %, horizontal displacements increase fourfold, which can lead to the activation of landslide processes.

doi: 10.31774/2712-9357-2025-15-3-242-261

Keywords

soil mass, landslide, soil moisture, mathematical model, finite element method, numerical calculation, response functions and analysis

For quoting

Degtyarev G. V., Leyer D. V., Degtyareva O. G. Mathematical analysis of the influence of soil mass moisture on the dynamics of changes in horizontal landslide crest displacements. Land Reclamation and Hydraulic Engineering. 2025;15(3):242–261. (In Russ.). https://doi.org/10.31774/2712-9357-2025-15-3-242-261.

Authors

G. V. Degtyarev – Professor, Doctor of Technical Sciences, Kuban State Agrarian University named after I. T. Trubilin (350044, Krasnodar Territory, Krasnodar, st. Kalinin, 13), AuthorID: 144403, degtyarev.g.v@mail.ru, ORCID: 0000-0002-1451-4489;

D. V. Leyer – Associate Professor, Candidate of Technical Sciences, Kuban State Agrarian University named after I. T. Trubilin (350044, Krasnodar Territory, Krasnodar, st. Kalinin, 13), AuthorID: 794169, dasha_leyer@mail.ru, ORCID: 0000-0001-9893-030X;

O. G. Degtyareva – Associate Professor, Doctor of Technical Sciences, Kuban State Agrarian University named after I. T. Trubilin (350044, Krasnodar Territory, Krasnodar, st. Kalinin, 13), AuthorID: 723746, degtyareva.o.g@mail.ru, ORCID: 0000-0001-9312-9222.

Bibliography

1. Bogomolov A.N., Matsiy S.I., Babakhanov B.S., Bezuglova E.V., Leyer D.V., Kuznetsova S.V., 2012. Stabilizatsiya opolznya na uchastke stroitel'stva zheleznoy dorogi v g. Sochi [Landslide stabilization on the section of the railroad construction in Sochi]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. Seriya: Stroitel'stvo i arkhitektura [Bullet. of Volgograd State University of Architecture and Civil Engineering. Series: Civil Engineering and Architecture], iss. 29(48), pp. 15-25, EDN: RBUZHT. (In Russian).

2. Bogomolov A.N., Matsiy S.I., Kalashnikov S.Yu., Babakhanov B.S., Bezuglova E.V., Leyer D.V., Kuznetsova S.V., 2012. Prichiny aktivizatsii opolznya na Federal'noy avtomobil'noy doroge g. Sochi i meropriyatiya po yego stabilizatsii [Causes of landslide activation on the federal road in Sochi and measures for its stabilization]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. Seriya: Stroitel'stvo i arkhitektura [Bullet. of Volgograd State University of Architecture and Civil Engineering. Series: Civil Engineering and Architecture], iss. 29(48), pp. 6-14, EDN: RBUZHJ. (In Russian).

3. Leyer D.V., Sery N.N., Lyubarsky D.G., 2021. Osobennosti proektirovaniya opor truboprovodov na opolznevykh sklonakh [Design peculiarities of pipeline support on landslide slopes]. Transportnye sooruzheniya [Transport Structures], vol. 8, no. 3, DOI: 10.15862/02SATS321, EDN: XTKWHY. (In Russian).

4. Lari S., Frattini P., Crosta G.B., 2014. A probabilistic approach for landslide hazard analysis. Engineering Geology, vol. 182, no. 1, 12 р., http://dx.doi.org/10.1016/j.enggeo.2014.07.015.

5. Bandurin M.A., Volosukhin V.A., Prikhodko I.A., Rudenko A.A., 2023. Analysis of the stability of the Kuban River landslide slope involving the materials of landslide hazard monitoring. Construction and Geotechnics, vol. 14, no. 4, pp. 62-74, DOI: 10.15593/2224-9826/2023.4.05, EDN: GJXUKZ.

6. Matsiy S.I, Fedorovsky V.G., Ryabukhin A.K., 2019. Aktual'nye problemy sover-shenstvovaniya normativnoy bazy v oblasti inzhenernoy zashchity [Actual problems of the improvement of the regulation standards in the field of engineering protection]. Osnovaniya, fundamenty i mekhanika gruntov [Soil Mechanics and Foundation Engineering], no. 4, pp. 25-29, EDN: RFRFXA. (In Russian).

7. Bandurin M.A., Volosukhin V.A., Mikheev A.V., Volosukhin Y.V., Vanzha V.V., 2018. Finite-element simulation of possible natural disasters on landfall dams with changes in climate and seismic conditions taken into account. Journal of Physics: Conference Series: International Conference Information Technologies in Business and Industry (ITBI 2018), vol. 1015, article number: 032011, DOI: 10.1088/1742-6596/1015/3/032011, EDN: XXHUCD.

8. Degtyareva O.G., Naidenov S.Yu., Safronova T.I., Degtyarev G.V., 2017. Chislennyy metod variantnogo proektirovaniya chashi basseyna i yego tekhniko-ekonomicheskaya otsenka [Numerical method of the variant pool design and its technical and economic evaluation]. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta [Proceed. of Kuban State Agrarian University], no. 69, pp. 303-308, DOI: 10.21515/1999-1703-69-303-308, EDN: YPJLXL. (In Russian).

9. Degtyarev V.G., Degtyarev G.V., Degtyareva O.G., 2023. Chislennoe modelirovanie i tsifrovoy matematicheskiy analiz pri issledovanii slozhnykh sistem [Numerical modeling and digital mathematical analysis in the study of complex systems]. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional'noe obrazovanye [Proceed. of Lower Volga Agro-University Complex: Science and Higher Education], no. 3(71), pp. 540-553, DOI: 10.32786/2071-9485-2023-03-53, EDN: GXGHRA. (In Russian).

10. Zienkiewicz O.C., Taylor R.L., Zhu J.Z., 2005. The Finite Element Method: Its Basis & Fundamentals. Sixth edition. McGrawhill, 733 р.

11. Ryabukhin A.K., Matsiy S.I., Bezuglova E.V., Leyer D.V., Sery D.G., 2024. Otsenka riska kak mera povysheniya effektivnosti realizatsii geotekhnicheskogo monitoringa na primere ob"ekta v Yuzhnom federal'nom okruge [Risk assessment as a measure to increase the efficiency of geotechnical monitoring using the example of an object in the Southern Federal District]. Construction and Geotechnics, vol. 15, no. 4, pp. 15-24, DOI: 10.15593/2224-9826/2024.4.02, EDN: MQVBWX. (In Russian).

12. Bandurin M.A., Yurchenko I.F., Volosukhin V.A., 2018. Remote Monitoring of Relia-bility for Water Conveyance Hydraulic Structures. Materials Science Forum, vol. 931, pp. 209-213, DOI: 10.4028/www.scientific.net/MSF.931.209, EDN: YAOJAD.

13. Zerkal O.V., Strom A.L., 2021. Classification of Cryogenic Landslides and Related Phenomena (by Example of the Territory of Russia). Understanding and Reducing Landslide Disaster Risk: Vol. 6. Specific Topics in Landslide Science and Applications. Springer, pp. 377-383, https://doi.org/10.1007/978-3-030-60713-5_37.

14. Sidaravichute U.R., Matsiy V.S., 2024. Ekzogennye geologicheskie protsessy [Exogenous geological processes]. Puti povysheniya effektivnosti oroshaemogo zemledeliya [Ways of Increasing the Efficiency of Irrigated Agriculture], vol. 92, no. 192, pp. 199-212, EDN: WCRAIN. (In Russian).

15. Degtyarev G.V., Datsjo D.A., Vysokovsky D.A., Turko M.S., 2018. The foundation pit deep site ground state design modelling. Materials Science Forum, vol. 931, pp. 396-401, DOI: 10.4028/www.scientific.net/MSF.931.396, EDN: YPTFNC.

16. Matsiy S.I., Yeshchenko O.Yu., Lyubarsky N.N., Shelestov S.A., Matsiy V.S., 2024. Metody rascheta protivoopolznevykh sooruzhenij na sejsmicheskoe vozdejstvie [Methods for calculating landslide protection structures for seismic impact]. Osnovaniya, fundamenty i mekhanika gruntov [Soil Mechanics and Foundation Engineering], no. 5, pp. 2-7, EDN: HEIJJD (In Russian).

17. Matsii S.I., Yeshchenko O.Yu., Lyubarskii N.N., Shelestov S.A., Matsii V.S., 2024. Calculation of Anti-Landslide Structures for Seismic Impacts. Soil Mechanics and Foundation Engineering, vol. 61, no. 5, pp. 403-410, DOI: 10.1007/s11204-024-09990-8, EDN: WMGPOC.

18. Katsko A.I., Matsiy S.I., 2024. Otsenka sostoyaniya opolznevogo sklona na osnove analiza mnogomernykh vremennykh ryadov dannykh geotekhnicheskogo monitoringa [Assessment of the state of a landslide slope based on the analysis of multidimensional time series of geotechnical monitoring data]. Prirodoobustroystvo [Environmental Engineering], no. 3, pp. 80-87, DOI: 10.26897/1997-6011-2024-3-80-87, EDN: XXQWBE. (In Russian).

19. Bandurin M.A., Prikhodko I.A., Bandurina I.P., Rudenko A.A., 2023. Assessment of the technical condition of bridge crossings on the main canals of irrigation systems. IOP Conference Series: Earth and Environmental Science, vol. 1138, no. 1, article number: 012002, DOI: 10.1088/1755-1315/1138/1/012002, EDN: KUCCNI.

20. Matsiy S.I., Sidaravicute U.R., Matsiy V.S., 2024. Risk assessment of debris flows in vulnerable areas. Debris Flows: Disasters, Risk, Forecast, Protection: Proceed. of the 7th International Conference. Moscow, Geomarketing LLC, pp. 327-333, EDN: FMAEBN.

21. Shadunts K.Sh., 1983. Opolzni-potoki [Landslides-flows]. Moscow, Nedra Publ., 120 p. (In Russian).

Funding

The work was funded within the framework of the State Assignment on the theme: “Development of effective architectural, structural and technological solutions for the prevention and elimination of accidents and emergencies of natural and man-made nature in the design, construction, reconstruction and operation of buildings and structures”, registration number is: 121032300040-4.

Download