GULLY MODELING FOR FOREST RECLAMATION PURPOSES
- Land Reclamation, Recultivation, and Land Protection
Purpose: to substantiate a complex of water protection and reclamation measures aimed at preventing the negative impact of diffuse pollution sources on water quality in small river basins, reducing soil erosion and restoring ecological framework elements using the Kazanka River basin as an example.
Materials and methods. The methodological basis is the analysis of studies covering the main issues of runoff and soil erosion formation, regulatory documents and guidelines.
Results. The need for a comprehensive task on reducing diffuse pollution in river basins is substantiated, namely: the use of interrelated organizational, agrotechnical, forest reclamation, and hydraulic engineering measures to prevent erosion and restore elements of the ecological framework. Calculations of environmental sustainability for the Kazanka River basin were performed, which made it possible to identify the most unstable sub-basins. The sub-basins of Sula (KESL = 0.22) and Shimyakovka (KESL = 0.32) are characterized by pronounced instability. Degradation processes leading to soil erosion and formation of diffuse runoff, which lead to deterioration of water quality in the Kazanka River, are also observed there. Only the Kis’mes’ sub-basin (KESL = 0.52) can be considered stable; the Atynka, the Verezenka, the Iya, located in the upper reaches of the river, are of low stability. The performed calculation of the Sula sub-basin sustainability (representative section) of the Kazanka River showed that the planned measures make it possible to transfer the agrolandscape from a state of pronounced instability to a low-stability state (KESL = 0.4).
Conclusions. The main sources of diffuse pollution of water bodies are agricultural lands, the use of fertilizers in fields, agricultural enterprises, including livestock farms, leading to a decrease in the ecological sustainability of agricultural landscapes. Measures to increase agricultural landscape sustainability and reduce diffuse runoff significantly are substantiated.
doi: 10.31774/2712-9357-2025-15-2-149-173
diffuse pollution, pollution sources, ecological sustainability, agroforestry, hydraulic engineering measures
Kireicheva L. V., Angold Ye. V., Kuznetsov Yu. S. Justification of a complex of measures aimed at reducing diffuse pollution in small river basins. Land Reclamation and Hydraulic Engineering. 2025;15(2):149–173. (In Russ.). https://doi.org/10.31774/2712-9357-2025-15-2-149-173.
1. Danilov-Danilyan V.I., 2020. Diffuznoye zagryaznenie vodnykh ob"ektov: problemy i resheniya: kollektivnaya monografiya [Diffuse Pollution of Water Bodies: Problems and Solutions: collective monograph]. Moscow, RAS, 512 p., EDN: CBLCTD. (In Russian).
2. Kireycheva L.V., Lentiaeva E.A., 2020. Vliyanie sel'skokhozyaystvennogo proizvod-stva na zagryaznenie vodnykh ob"ektov [The influence of agricultural production on pollution of water bodies]. Prirodoobustroystvo [Environmental Engineering], no. 5, pp. 18-26, DOI: 10.26897/1997-6011/2020-5-18-27, EDN: OMUCXC. (In Russian).
3. Dolgov S.V., Koronkevich N.I., Barabanova E.A., 2020. Osobennosti sovremennogo formirovaniya stoka biogennykh veshchestv v tsentral'noy chasti Russkoy ravniny [Special features of the contemporary biogens runoff formation in the central part of the Russian Plain]. Vodnoe khozyaystvo Rossii: problemy, tekhnologii, upravlenie [Water Sector of Russia: Problems, Technologies, Management], no. 2, pp. 136-145, DOI: 10.35567/1999-4508-2020-2-9, EDN: AGVCDU. (In Russian).
4. Kireycheva L.V., Lentiaeva E.A., Timoshkin A.D., Yashin V.M., 2020. Otsenka diffuznogo zagryazneniya ot sel'skokhozyaystvennykh territoriy v basseyne verkhney Volgi i razrabotka meropriyatiy po ego snizheniyu na primere reki Yakhromy [The assessment of the diffuse pollution from agricultural territories in the Upper Volga basin and the development of measures to reduce it: case study of the Yakhroma River]. Vodnye resursy [Water Resources], vol. 47, no. 5, pp. 523-535, DOI: 10.31857/S0321059620050090, EDN: ATENTA. (In Russian).
5. Yasinsky S.V., Kashutina E.A., Sidorova M.V., Narykov A.N., 2020. Antropogennaya nagruzka i vliyanie vodosbora na diffuznyy stok biogennykh elementov v krupnyy vodnyy ob"ekt (na primere vodosbora Cheboksarskogo vodokhranilishcha) [Anthropogenic load and the effect of drainage area on the diffuse runoff of nutrients into a large water body: case study of the Cheboksary Reservoir]. Vodnye resursy [Water Resources], vol. 47, no. 5, pp. 630-648. DOI: 10.31857/S0321059620050223, EDN: FXROOC. (In Russian).
6. Borodychev V.V., Buber A.L., Isaeva S.D., Dobrachev Yu.P., 2019. K obosnovaniyu meropriyatiy po predotvrashcheniyu diffuznogo zagryazneniya poverkhnostnykh vodnykh ob"ektov pri oroshenii na osnove imitatsionnogo modelirovaniya [Justification of protective measures against diffuse pollution of surface water objects during irrigation based on simulation]. Izvestiya Nizhne-volzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional'noe obrazovanie [Proceed. of Lower Volga Agro-University Complex: Science and Higher Education], no. 3(55), pp. 323-332, DOI: 10.32786/2071-9485-2019-03-41, EDN: ITEPGW. (In Russian).
7. Buber A.A., Talyzov A.A., 2019. Podgotovka iskhodnykh dannykh dlya issledovaniya vliyaniya sel'skokhozyaystvennykh ugodiy na basseyn reki Malyy Karaman [Preparation of initial data for the study of the impact of agricultural land on the Maly Karaman River basin]. Ekologicheskoe sostoyanie prirodnoy sredy i nauchno-prakticheskie aspekty sovremennykh agrotekhnologiy: materialy mezhdunar. nauchno-prakticheskoy konferentsii [Ecological State of Natural Environment and Scientific and Practical Aspects of Modern Agro-Technologies: Proceed. of the International Scientific-Practical Conference]. Ryazan, RGATU Publ., pp. 35-39. (In Russian).
8. Markin V.N., Shabanov V.V., 2016. Ranzhirovanie vodokhozyaystvennykh meropriyatiy: monografiya [Ranking of Water Management Measures: monograph]. Moscow, Russian State Agrarian University – Moscow Agricultural Academy named after K. A. Timiryazev, 83 p., EDN: XUAJPR. (In Russian).
9. Ratkovich L.D., Markin V.N., Glazunova I.V., Sokolova S.A., 2016. Faktory vliya-niya diffuznogo zagryazneniya na vodnye ob"ekty [Factors of influence of diffuse pollution on water bodies]. Prirodoobustroystvo [Environmental Engineering], no. 3, pp. 64-75, EDN: XUAJPR. (In Russian).
10. Cantoni J., Kalantari Z., Destouni G., 2023. Legacy contributions to diffuse water pollu-tion: Data-driven multi-catchment quantification for nutrients and carbon. Science of The Total Environment, vol. 879, Article number: 163092, DOI: 10.1016/j.scitotenv.2023.163092, EDN: WJASMU.
11. Jang S., Ji H., Choi J., Suh K., Kim H., 2021. Investigation of correlation between surface runoff rate and stream water quality. Water Science and Technology: Water Supply, vol. 21, no. 4, pp. 1495-1505, DOI: 10.2166/ws.2021.023, EDN: XWLFKS.
12. Volkov S.N., 2006. Sostoyanie i osnovnye napravleniya razvitiya zemleustroystva v Rossiyskoy Federatsii: monografiya [The State and Main Directions of Land Management Development in the Russian Federation: monograph]. State University of Land Management. Moscow, pp. 147-206. (In Russian).
13. Poluektov E.V., 2020. Eroziya pochv i plodorodie [Soil Erosion and Fertility]. Novocherkassk, Lik Publ., 229 p., EDN: IIILMX. (In Russian).
14. Kornilov I.M., Turusov V.I., 2021. Effektivnost' protivoerozionnykh sistem obrabotki pochvy na sklonovykh zemlyakh Yugo-Vostoka TSCHZ: monografiya [Efficiency of Anti-Erosion Soil Cultivation Systems on Sloping Lands of the South-East of the Central Chernozem Region: monograph]. Voronezh, Istoki Publ., 254 p., EDN: JJIVQG. (In Russian).
15. Poluektov E.V., Sukhomlinova N.B., 2022. Analiz effektivnosti pochvozashchitnykh priemov i meropriyatiy po ikh stokoreguliruyushchey sposobnosti [Analysis of the efficiency of soil conservation practices and measures for their flow-regulating ability]. Melioratsiya i gidrotekhnika [Land Reclamation and Hydraulic Engineering], vol. 12, no. 1, pp. 99-118, available: https://rosniipm-sm.ru/article?n=1263[accessed 27.01.2025], DOI: 10.31774/2712-9357-2022-12-1-99-118, EDN: BSVHQT. (In Russian).
16. Nasir Ahmad N.S.B., Mustafa F.B., Muhammad Yusoff S.Y., Didams G., 2020. A systematic review of soil erosion control practices on the agricultural land in Asia. International Soil and Water Conservation Research, vol. 8, iss. 2, pp. 103-115, DOI: 10.1016/j.iswcr.2020.04.001, EDN: DBCJUZ.
17. Guo S., Zhai L., Liu J., Liu H., Chen A., Wang H., Wu S., Lei Q., 2019. Cross-ridge tillage decreases nitrogen and phosphorus losses from sloping farm-lands in southern hilly regions of China. Soil and Tillage Research, vol. 191, pp. 48-56, DOI: 10.1016/j.still.2019.03.015.
18. Masyutenko N.P., Chuyan N.A., Bakhirev G.I., Kuznetsov A.V., Breskina G.M., Dubovik E.V., Masyutenko M.N., Pankova T.I., Kaluzhskikh A.G., 2013. Sistema otsenki ustoychivosti agrolandshaftov dlya formirovaniya ekologicheski sbalansirovannykh agrolandshaftov [System for Assessing the Agricultural Landscape Sustainability for the Formation of Ecologically Balanced Agricultural Landscapes]. Kursk, TOP Publ., 50 p., EDN: WIFMTN. (In Russian).