Founder and publisher – Russian Scientific Research Institute of Land Improvement Problems
Land Reclamation and Hydraulic Engineering Melioraciâ i gidrotehnika
ISSN 2712-9357
RUS / ENG

COMPREHENSIVE SEARCH FOR DAM LEAKAGE USING ELECTROMAGNETIC SENSING TECHNIQUES

Annotation

Purpose: comprehensive search for filtration sites on protective hydraulic structures using sensing techniques. 

Materials and methods. The results of a long-term study of the hydraulic structure section – a dam, which is a protective obstacle to water leakage from the ash disposal area of Chita TPP-1 are presented. Radiometers with frequencies of 34 and 13 GHz were installed on a ground carrier. As a result, when crossing the reservoir, route records of the radio brightness temperature of the ice cover, characterizing the power of thermal radiation, which recorded the areas of the outlet of water passing through the embankment, were obtained. To confirm the water leakage sites, a geoelectric section along the profile along the dam section, using the Skala-48 electrical prospecting station, was made. 

Results. Water filtration through this structure was detected using remote sensing techniques of the object. Satellite images in the visible range were analyzed at the initial moment of the reservoir ice cover formation, which is located near the dam, where the warm water leakage in the form of dark areas of ice was recorded. The rest of the water area of the reservoir ice cover is presented as a whitish area of ice in the images. This is due to the freshly fallen snow frozen into the ice cover, which was captured in it at the time of its formation. In addition, studies of the ice cover's own thermal radiation in the microwave range were carried out. 

Conclusions. The study confirmed the supposed location of water leakage through the dam. Three years after the study with the help of satellite images, it was shown that water leakage in this place ceased. In addition, the area of the water surface of the man-made reservoir near the dam was reduced by 4.1 times over ten years (2013–2024), while the amount of precipitation in the region increased. 

doi: 10.31774/2712-9357-2025-15-1-155-172

Keywords

dam, ash-disposal area, microwave radiometry, space images, electrical exploration, ice cover

For quoting

Gurulev A. A., Orlov A. O., Tsyrenzhapov S. V., Usmanov M. T. Comprehensive search for dam leakage using electromagnetic sensing techniques. Land Reclamation and Hydraulic Engineering. 2025;15(1):155–172. (In Russ.). https://doi.org/10.31774/2712-9357-2025-15-1-155-172.

Authors

A. A. Gurulev – Senior Researcher, Candidate of Physical and Mathematical Sciences, Associate Professor, Institute of Natural Resources, Ecology and Cryology of the Siberian Branch of the Russian Academy of Sciences, Chita, Russian Federation, sansang@mail.ru, ORCID: 0000-0003-2232-3583;

A. O. Orlov – Researcher, Candidate of Physical and Mathematical Sciences, Institute of Natural Resources, Ecology and Cryology of the Siberian Branch of the Russian Academy of Sciences, Chita, Russian Federation, Orlov_A_O@mail.ru, ORCID: 0000-0003-2574-181X;

S. V. Tsyrenzhapov – Engineer, Institute of Natural Resources, Ecology and Cryology of the Siberian Branch of the Russian Academy of Sciences, Chita, Russian Federation, lgc255@mail.ru, ORCID: 0000-0002-7590-5619;

M. T. Usmanov – Researcher, Institute of Natural Resources, Ecology and Cryology of the Siberian Branch of the Russian Academy of Sciences, Chita, Russian Federation, usgi@yandex.ru, AuthorID: 115637.

Bibliography

1. Shumakov B.B., Bezdnina S.Ya., Kireycheva L.V. [et al.], 1997. Gidromeliorativnye sistemy novogo pokoleniya [Hydro-Reclamation Systems of New Generation]. Moscow, VNIIGiM, 199 p., EDN: YIDOEL. (In Russian).

2. Konstantinova A.M., Lupyan E.A., 2020. Analiz posledstviy proryva damby Sardobinskogo vodokhranilishcha 1 maya 2020 g [Analysis of the consequences of the dam failure of the Sardoba Reservoir on May 1, 2020]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current Issues of Remote Sensing of the Earth from Space], vol. 17, no. 3, pp. 261-266, DOI: 10.21046/2070-7401-2020-17-3-261-266, EDN: UEJAXL. (In Russian).

3. Xie L., Xu W., Ding X., Bürgmann R., Giri S., Liu X., 2022. A multi-platform, open-source, and quantitative remote sensing framework for dam-related hazard investigation: Insights into the 2020 Sardoba dam collapse. International Journal of Applied Earth Observation and Geoinformation, vol. 111, 102849, 14 p., DOI: 10.1016/j.jag.2022.102849, EDN: IHEVCV. 

4. Shalikovsky A.V., Lepikhin A.P., Tiunov A.A., Kurganovich K.A., Morozov M.G., 2019. Navodneniya v Irkutskoy oblasti 2019 goda [Floods in Irkutsk region in 2019]. Vodnoe khozyaystvo Rossii: problemy, tekhnologii, upravlenie [Water Sector of Russia: Problems, Technologies, Management], no. 6, pp. 48-65, DOI: 10.35567/1999-4508-2019-6-4, EDN: NLMIVV. (In Russian).

5. Druzhinin A., Chislo pogibshikh v rezul'tate pavodka v Irkutskoy oblasti uvelichilos' do 26 [The Death Toll from the Flood in Irkutsk Region Has Increased to 26], available: https://tass.ru/proisshestviya/7060618. (In Russian).

6. Yurkevich N.V., Yurkevich N.V., Gureev V.N., Mazov N.A., 2020. Problemy kon-trolya fil'tratsii vod cherez gidrotekhnicheskie sooruzheniya v usloviyakh vechnoy merzloty [Problems of controlling water filtration in hydraulic structures in permafrost]. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov [Bullet. of Tomsk Polytechnic University. Georesources Engineering], vol. 331, no. 4, pp. 126-138, DOI: 10.18799/24131830/2020/4/2600, EDN: CEHPHQ. (In Russian).

7. Kosichenko Yu.M., 2008. Voprosy bezopasnosti i ekspluatatsionnoy nadezhnosti gidrotekhnicheskikh sooruzheniy meliorativnogo naznacheniya [Issues of safety and operational reliability of hydraulic structures for reclamation purposes]. Prirodoobustroystvo [Environmental Engineering], no. 3, pp. 67-71, EDN: JXWYLP. (In Russian).

8. Olenchenko V.V., Osipova P.S., 2022. Elektrotomografiya allyuvial'nykh otlo-zheniy pri poiskovykh rabotakh na rossypnoe zoloto [Electrical resistivity tomography of alluvial deposits during prospecting for placer gold]. Geologiya i geofizika [Geology and Geophysics], vol. 63, no. 1, pp. 117-129, DOI: 10.15372/GiG2020171, EDN: OFWTLR. (In Russian).

9. Naberukhina A.S., Mitskevich A.A., 2023. Analiz informativnosti metodov elek-tricheskogo karotazha [Analysis of the information content of electrical logging methods]. Geologiya i poleznye iskopaemye Zapadnogo Urala [Geology and Useful Minerals of the Western Urals], no. 6(43), pp. 147-154, EDN: PJCVLS. (In Russian).

10. Khaptanov V.B., Bashkuev Yu.B., Dembelov M.G., Naguslaeva I.B., 2022. Georadarnaya i radioimpedansnaya diagnostika akvatorii reki Selengi [Georadar and radioimpedance diagnostics of the Selenga River water area]. Geodinamika i tektonofizika [Geodynamics and Tectonophysics], vol. 13, no. 3, 0643, DOI: 10.5800/GT-2022-13-3-0643, EDN: KGKFHI. (In Russian).

11. Ryazanov S.S., Kulagina V.I., 2019. Opredelenie zon zatopleniya poymennykh ost-rovov kuybyshevskogo vodokhranilishcha s ispol'zovaniem dannykh distantsionnogo zon-dirovaniya [Determination of flooding zones of the floodplain islands on the territory of the Kuibyshevsky water reservoir using remote sensing data]. Geosfernye issledovaniya [Geosphere Research], no. 3, pp. 69-74, DOI: 10.17223/25421379/12/6, EDN: WWHQHF. (In Russian).

12. Bondur V.G., Chimitdorzhiev T.N., Dmitriev A.V., Dagurov P.N., 2022. Otsenka reaktivatsii opolznya na reke Bureya metodami radarnoy interferometrii [Assessment of the Bureya River landslide reactivation using the persistent scatterer interferometry]. Doklady Rossiyskoy akademii nauk. Nauki o Zemle [Reports of the Russian Academy of Sciences. Earth Sciences], vol. 502, no. 2, pp. 83-89, DOI: 10.31857/S2686739722020025, EDN: IUEMHH. (In Russian).

13. Kozionov A.P., Pyait A.L., Mokhov I.I., Ivanov Yu.P., 2015. Algoritm na osnove modeli peredatochnoy funktsii i odnoklassovoy klassifikatsii dlya obnaruzheniya anomal'nogo sostoyaniya damb [Algorithm for dike abnormal behavior detection based on transfer function model and one-class classification]. Informatsionno-upravlyayushchie sistemy [Information and Control Systems], no. 6(79), pp. 10-18, DOI: 10.15217/issn1684-8853.2015.6.10, EDN: VBCTPV. (In Russian).

14. Bandurin M.A., Prikhodko I.A., Volosukhin V.A., Rudenko A.A., 2023. [Diagnostics using non-destructive testing devices for reinforced concrete lining and soil foundation to assess the technical condition of the Kryukovskoe Reservoir dam]. Melioratsiya i gidrotekhnika, vol. 13, no. 3, pp. 220-236, available: https://rosniipm-sm.ru/article?n=1388 [accessed 09.01.2025], DOI: 10.31774/2712-9357-2023-13-3-220-236, EDN: GTHDRO. (In Russian).

15. Bordonskiy G.S., Gurulev A.A., 2008. Osobennosti radioteplovogo izlucheniya ledyanykh pokrovov vodoemov s razlichnoy stepen'yu mineralizatsii [Characteristics of thermal radiation of ice covers on water bodies with different mineralization]. Vodnye resursy [Water Resources], vol. 35, no. 2, pp. 210-215, EDN: IJKNRH. (In Russian).

16. Zamana L.V., Usmanova L.I., Usmanov M.T., 2010. Gidrokhimiya otstoynika zolootvala Chitinskoy TETS-1 i sostav podzemnykh vod v zoneyego infil'tratsionnogo vliyaniya [Hydrochemistry of Chitinskaya HPS-1 dump ash pound and underground waters composition in impact zone of its infiltration]. Vestnik Buryatskogo gosudarstvennogo universiteta [Bullet. of Buryat State University], no. 3, pp. 28-33, EDN: MTWJVB. (In Russian).

17. Olenchenko V.V., Usmanov M.T., Usmanova L.I., Tsyrenzhapov S.V., 2017. Vyyavlenie putey migratsii tekhnogennykh vod iz gidrotekhnicheskikh sooruzheniy metodom elektrotomografii (na primere zolootvala chitinskoy TETS-1) [Identification of migration ways of technogenic waters from hydraulic structures by electrotomography (on the example of the ash disposal area of Chita CHPP-1)]. Mezhdunarodnyy zhurnal prikladnykh i fundamental'nykh issledovaniy [International Journal of Applied and Fundamental Research], no. 1-1, pp. 101-105, EDN: XUVPRD. (In Russian).

18. Gurulev A.A., Orlov A.O., Tsyrenzhapov S.V., Kazantsev V.A., Kozlov A.K., 2023. Vyyavlenie oblastey torosheniya presnogo ledyanogo pokrova po sobstvennomu teplovomu izlucheniyu [Identification of areas of hummocking of freshwater ice cover by its own thermal radiation]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current Problems of Remote Sensing of the Earth from Space], vol. 20, no. 1, pp. 219-228, DOI: 10.21046/2070-7401-2023-20-1-219-228, EDN: QSLLMQ. (In Russian).

19. Bordonskiy G.S., Krylov S.D., Polyakov S.V., 1992. Osobennosti radioyarkosti presnogo ledyanogo pokrova, soderzhashchego gazovye vklyucheniya [Features of radio brightness of the fresh ice cover containing gaseous inclusions]. Issledovanie Zemli iz kosmosa [Earth Research from Space], no. 5, pp. 13-21, EDN: STBBOB. (In Russian).

20. Murfitt J., Duguay C.R., 2021. 50 years of lake ice research from active microwave remote sensing: Progress and prospects. Remote Sens. Environ, vol. 264, 112616, DOI: 10.1016/j.rse.2021.112616, EDN: HDUEDJ.

21. Gurulev A.A., Orlov A.O., Tsyrenzhapov S.V., 2011. Teplovoe izluchenie trekh-sloynoy sredy s tonkim promezhutochnym sloem [Thermal radiation in a three-layer medium with a thin intermediate layer]. Issledovanie Zemli iz kosmosa [Earth Research from Space], no. 4, pp. 5-11, EDN: NXXGYF. (In Russian).

Download