Founder and publisher – Russian Scientific Research Institute of Land Improvement Problems
Land Reclamation and Hydraulic Engineering Melioraciâ i gidrotehnika
ISSN 2712-9357
RUS / ENG

INVESTIGATION OF THE RADIAL VELOCITY OF A LOW-PRESSURE HYDROCYCLONE CLARIFIER OF SURFACE RUNOFF WATERS

Annotation

Purpose: substantiate the design and technological parameters of hydrocyclones-clarifiers by means of a detailed study of the radial velocity in significant sections, namely, at the transition from the cylindrical to the conical part of the apparatus, in the technology of water purification for irrigation. 

Materials and methods. Modeling and study of the complex process of changing the radial velocity was carried out in two stages. At the first stage, an experiment was carried out on a 170 mm diameter hydrocyclone-clarifier using a numerical method based on the ParaView and OpenFOAM software package, the limit of radial velocity change was established at a given velocity at the inlet to the apparatus, and a database in the form of a matrix was obtained. At the second stage, the obtained array of experimental data describing the velocity change, reflecting the physics of the processes taking place, was subjected to digital analysis to obtain dependencies and extrema of the function. 

Results. During the experiment and digital analysis it was determined that the extreme minimum value of the radial velocity is observed at the apparatus wall at the point minus 76 at the velocity equal to 13.06 m/s at the hydrocyclone inlet. Under certain conditions, the radial velocity has a zero value; for example, for an apparatus with a diameter of 170 mm in a cross-section of minus 50 mm at the transition from the cylindrical to the conical part, this phenomenon was established at the velocity equal to 18.75 m/s at the hydrocyclone inlet. 

Conclusions. The data on the change in the radial velocity in the hydrocyclone-clarifier depending on the velocity at the apparatus inlet at each point to the left and to the right of the air cord are summarized. These studies will allow in the future to simulate the optimal design and technological parameters of the hydrocyclone clarifier for the specified natural conditions, which will make it possible to bring the water quality to the requirements acceptable for irrigation. 

doi: 10.31774/2712-9357-2024-14-4-258-281

Keywords

hydrocyclones-clarifiers, radial velocity, mathematical modeling, numerical experiment, digital analysis, fluid dynamics of hydrocyclones

For quoting

Degtyarev G. V., Degtyareva O. G., Nikolov O. O. Investigation of the radial velocity of a low-pressure hydrocyclone clarifier of surface runoff waters. Land Reclamation and Hydraulic Engineering. 2024;14(4):258–281. (In Russ.). https://doi.org/10.31774/2712-9357-2024-14-4-258-281.

Authors

G. V. Degtyarev – Professor, Doctor of Technical Sciences, Professor, Kuban State Agrarian University named after I. T. Trubilin, Krasnodar, Russian Federation, degtyarev.g.v@mail.ru, ORCID: 0000-0002-2259-2719;

O. G. Degtyareva – Head of the Department, Doctor of Technical Sciences, Associate Professor, Kuban State Agrarian University named after I. T. Trubilin, Krasnodar, Russian Federation, marxotgeo@mail.ru, ORCID: 0000-0001-9312-9222;

O. O. Nikolov – Chief Engineer of the Project, Project Expert Association “Engineering Center”, Krasnodar, Russian Federation, eltsen2020@gmail.com.

Bibliography

1. Semenov A.V., Latyshev N.S., Petruk R.V., 2023. Sovremennye resheniya akkumulyatsii i ochistki dozhdevykh i talykh vod [Modern solutions for accumulation and purification of rainfall and snow-melt water]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Technique], no. 9, pp. 56-59, DOI: 10.35776/VST.2023.09.09, EDN: IELGXZ. (In Russian).

2. Lagutkin M.G., Baranova E.Yu., Pigarev V.M., 2013. Ochistka oborotnoy vody ot mekhanicheskikh primesey v tsilindrokonicheskikh gidrotsiklonakh s priemnym bunkerom [Purification of circulating water from mechanical impurities in cylindrical-conical hydrocyclones with a receiving hopper]. Bezopasnost' truda v promyshlennosti [Occupational Safety in Industry], no. 3, pp. 24-28, EDN: PWUKMP. (In Russian).

3. Eputaev G.A., Danilova M.G., Varlamov B.S., 2007. Lentochnyy magnitnyy separator [Belt Magnetic Separator]. Patent RF, no. 2356631, EDN: FBQIUX. (In Russian).

4. Lamskova M.I., Novikov A.E., Filimonov M.I., Borodychev S.V., 2020. Razrabotka dvukhkamernogo gidrotsiklona dlya uzlov vodopodgotovki orositel'nykh sistem [Development of a two-chamber hydrocyclone for water treatment units of irrigation systems]. Puti povysheniya effektivnosti oroshaemogo zemledeliya [Ways of Increasing the Efficiency of Irrigated Agriculture], no. 3(79), pp. 104-109, EDN: COAOLS. (In Russian).

5. Baimanov K.I., Nazarbekov K.K., Baimanov R.K., 2020. Issledovanie rezhima raboty irrigatsionnykh otstoynikov v nizhnem techenii reki Amudar'ya [Study of the operating mode of irrigation sedimentation tanks in the lower reaches of the Amu Darya river]. Melioratsiya i vodnoe khozyaystvo [Land Reclamation and Water Management], no. 2, pp. 10-14, EDN: AVVFSC. (In Russian).

6. Borodychev V.V., Novikov A.E., Lamskova M.I., Filimonov M.I., 2020. Apparaturnoe oformlenie sovmeshchennykh protsessov v tekhnologii vodopodgotovki [Instrumentation of the combined processes in water treatment technology]. Novye tekhnologii [New Technologies], vol. 16, no. 5, pp. 55-62, DOI: 10.47370/2072-0920-2020-16-5-55-62, EDN: AANTMR. (In Russian).

7. Eputaev G.A., Danilova M.G., Varlamov B.S., 2007. Magnitnyy tsentrobezhnyy separator [Magnetic Centrifugal Separator]. Patent RF, no. 2350395, EDN: ZHHVBZ. (In Russian).

8. Minigazimov N.S., 1999. Neft' i tyazhelye metally (ekologicheskie aspekty) [Oil and heavy metals (environmental aspects)]. Bashkirskiy ekologicheskiy vestnik [Bashkir Ecological Bulletin], no. 2, pp. 24-29, EDN: ROHBKP. (In Russian).

9. Golovanchikov A.B., Novikov A.E., Lamskova M.I., Filimonov M.I., 2018. Modelirovanie protsessov razdeleniya neodnorodnykh zhidkostnykh sistem v gidrotsiklone s uchetom kriteriev podobiya [Modeling the process of separation of non-homogeneous liquid disperse systems in a hydrocyclone accounting for similarity criteria]. Khimicheskoe i neftegazovoe mashinostroenie [Chemical and Petroleum Engineering], no. 2, pp. 34-38, EDN: NBDNJI. (In Russian).

10. Lamskova M.I., Filimonov M.I., Sukharev Yu.I., Novikov A.E., Borodychev S.V., 2020. Optimizatsiya konstruktivno-rezhimnykh parametrov gidrotsiklona s uchetom naturnykh issledovaniy [Optimization of design and operating parameters of a hydrocyclone taking into account field research]. Prirodoobustroystvo [Environmental Engineering], no. 4, pp. 61-67, DOI: 10.26897/1997-6011/2020-4-61-67, EDN: DPRCLT. (In Russian).

11. Lamskova M.I., Filimonov M.I., Novikov A.E., 2016. [Use of vortex flow and sorption effect in water treatment in low pressure irrigation systems with local distribution]. Nauchnyy zhurnal Rossiyskogo NII problem melioratsii, no. 4(24), pp. 189-201, available: https:rosniipm-sm.ru/article?n=1122 [accessed 20.06.2024], EDN: WZWFJB. (In Russian).

12. Degtyarev G.V., 2006. Sravnitel'nyy analiz protsessov v nizkonapornykh gidrotsiklonakh-osvetlitelyakh razlichnykh modifikatsiy [The comparative analysis of processes in the low-pressure hydrocyclone-illuminators of different modifications]. Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Tekhnicheskie nauki [Bulletin of Higher Educational Institutions. North Caucasian Region. Technical Sciences], no. 6, pp. 115-118, EDN: HTNFKF. (In Russian).

13. Yablonskiy V.O., 2023. Modeling of viscoplastic fluids separation in a cylindroconical hydrocyclone by pressure flotation. Chemical and Petroleum Engineering, vol. 59, no. 3-4, pp. 191-197, https:doi.org/10.1007/s10556-023-01227-z, EDN: HQSSFJ.

14. Degtyarev G.V., 2006. Statisticheskie matematicheskie modeli protsessov v nizkonapornykh gidrotsiklonakh v zavisimosti ot konstruktivnykh i tekhnologicheskikh faktorov [Processes statistic mathematical models in low pressure hydro cyclones depending on design and technological factors]. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta [Proceedings of Kuban State Agrarian University], no. 3, pp. 202-212, EDN: JUGVHV. (In Russian).

15. Yablonskiy V.O., 2023. Modeling the effect of design parameters of a cylindrical hydrocyclone on flotation cleaning performance of viscoplastic fluids. Chemical and Petroleum Engineering, vol. 58, no. 9-10, pp. 831-838, https:doi.org/10.1007/s10556-023-01169-6, EDN: MLJYTK.

16. Eputaev G.A., Danilova M.G., Varlamov B.S., 2009. Traektorii dvizheniya magnitnykh chastits v diskovom separatore pri mokrom obogashchenii zhelezosoderzhashchikh materialov [Motion pass of magnetic particles in the disk separator at wet enrichment of ferruginous materials]. Gornyy informatsionno-analiticheskiy byulleten' [Mining Information and Analytical Bulletin], no. S16, pp. 529-537, EDN: MDWYVR. (In Russian).

17. Lagutkin M.G., Mikhalchenkova A.N., Butrin M.M., 2016. Smeshenie penoobrazuyushchikh zhidkostey v gidrotsiklonakh [Mixing foaming liquids in hydrocyclones]. Bezopasnost' truda v promyshlennosti [Industrial Safety], no. 9, pp. 26-32, EDN: WKNJEB. (In Russian).

18. Izyumov Yu.A., Tortika N.A., Kireeva E.S., Krasnov A.A., 2022. Rezul'taty issledovaniya vliyaniya konstruktivnykh elementov bikonicheskogo gidrotsiklona na kachestvo mekhanicheskoy ochistki zhidkostey [Results of a study of the influence of structural elements of a biconical hydrocyclone on the quality of mechanical cleaning of liquids]. Sovershenstvovanie metodov gidravlicheskikh raschetov vodopropusknykh i ochistnykh sooruzheniy [Improving the Methods of Hydraulic Calculations of Water-Conducting and Treatment Facilities], vol. 1, no. 1(47), pp. 16-23, EDN: AROJRL. (In Russian).

19. Degtyarev V.G., Degtyareva O.G., Degtyarev G.V., 2023. [Study of pore pressure distribution under an underground dam in a mountain valley during the atmospheric precipitation accumulation]. Melioratsiya i gidrotekhnika, vol. 13, no. 4, pp. 396-412, available: https:rosniipm-sm.ru/article?n=1417 [accessed 20.06.2024], DOI: 10.31774/2712-9357-2023-13-4-396-412, EDN: ZNGLCO. (In Russian).

20. Degtyarev V.G., Degtyareva O.G., Sekisov A.N., 2023. [Investigation of total stresses in rectangular section conduit body located on a clay base]. Melioratsiya i gidrotekhnika, vol. 13, no. 2, pp. 299-317, available: https:rosniipm-sm.ru/article?n=1369 [accessed 20.06.2024], DOI: 10.31774/2712-9357-2023-13-2-299-317, EDN: KAWIVU. (In Russian).

Download