GULLY MODELING FOR FOREST RECLAMATION PURPOSES
- Land Reclamation, Recultivation, and Land Protection
Purpose: to state hydraulic characteristics and determine priority directions for improving the irrigation module design for combined drip and micro-sprinkler irrigation.
Materials and methods. The study is based on the joint use of theoretical methods – a well-known mathematical model for calculating the hydraulic characteristics of the irrigation module and experiment, which allows assessing the problem state and scale solutions in any necessary proportions.
Results. According to calculations, the uniformity of watering is maintained at an acceptable level at a lower head level in the range of 1.56–1.68 atm when installing six microsprinklers on a drip line. When installing eight sprinklers, the water head along the length of the drip pipeline decreased to an unacceptable 1.39–1.40 atm. Experimental studies have shown that there is only an option with two sprinklers installed on the pipeline above the level of 1.5 atm. Already with the installation of four sprinklers, the water head along the length of the pipeline decreased to 1.45–1.47 atm. At the same time, the variation in the actual microsprinkler performance reached 16 % or more. The discrepancy between experimental and model data is explained by the fact that the calculation model does not fully take into account local resistances that arise when connecting sprinklers.
Conclusions. Two main reasons of the increased uneven distribution of irrigation water over the irrigated area have been identified. The first reason is a significant increase in water flow in the irrigation pipeline when emitters and sprinklers work together. The solution to this problem is to develop structures that make it possible to separate the water flow through emitters and through sprinklers in time. The second reason is an increase in local resistance in the water diversion units to the sprinklers. The solution to this problem is to develop special water diversion structures that would be characterized by minimal local resistance.
doi: 10.31774/2712-9357-2024-14-2-74-93
combined irrigation, hydraulic studies, head loss, flow separation, local resistance, uniformity of irrigation
Lytov M. N. Hydraulic studies of the irrigation module of combined irrigation systems. Land Reclamation and Hydraulic Engineering. 2024;14(2):74–93. (In Russ.). https://doi.org/10.31774/2712-9357-2024-14-2-74-93.
1. Dubenok N.N., Mayer A.V., Gurenko V.M., Borodychev S.V., 2019. Sistema kombinirovannogo orosheniya i effektivnost' proizvodstva ovoshchnoy produktsii [Combined irrigation system and efficiency of vegetable production]. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional'noe obrazovanie [Proceedings of Lower Volga Agro-University Complex: Science and Higher Education], no. 2(54), pp. 253-265, DOI: 10.32786/2071-9485-2019-02-31, EDN: UXAJVR. (In Russian).
2. Melikhova E.V., Borodychev V.V., 2017. Modelirovanie vlagoperenosa pri kombinirovannom oroshenii s ispol'zovaniem differentsial'nogo uravneniya Puassona [Modeling of moisture transfer under combined irrigation using the Poisson differential equation]. Melioratsiya i vodnoe khozyaystvo [Land Reclamation and Water Management], no. 2, pp. 16-19, EDN: YMXWFN. (In Russian).
3. Khrabrov M.Yu., Mayer A.V., 2023. Sistemy kombinirovannogo orosheniya dlya sadovykh i propashnykh kul'tur [Combined irrigation systems for horticultural and row crops]. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional'noe obrazovanie [Proceedings of Lower Volga Agro-University Complex: Science and Higher Education], no. 2(70), pp. 110-118, DOI: 10.32786/2071-9485-2023-02-12, EDN: DJTYRI. (In Russian).
4. Lytov M.N., 2022. Agrobiologicheskaya effektivnost' kombinirovannogo orosheniya sel'skokhozyaystvennykh kul'tur v Nizhnem Povolzh'e [Agrobiological efficiency of combined irrigation of agricultural crops in the Lower Volga region]. Agrarnaya Rossiya [Agrarian Russia], no. 10, pp. 3-7, DOI: 10.30906/1999-5636-2022-10-3-7, EDN: RKOZAL. (In Russian).
5. Ovchinnikov A.S., Khrabrov M.Yu., Kolesova N.G., Borodychev S.V., 2019. Povyshenie effektivnosti kombinirovannykh sposobov orosheniya [Increasing the efficiency of combined irrigation methods]. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional'noe obrazovanie [Proceedings of Lower Volga Agro-University Complex: Science and Higher Education], no. 1(53), pp. 231-241, DOI: 10.32786/2071-9485-2019-01-31, EDN: IAMRJW. (In Russian).
6. Lytov M.N., 2023. [Model of a water reclamation system with the function of agricultural crop protection from climate risks]. Melioratsiya i gidrotekhnika, vol. 13, no. 4, pp. 40-61, available: https:rosniipm-sm.ru/article?n=1397 [accessed 01.03.2024], DOI: 10.31774/2712-9357-2023-13-4-40-61, EDN: BVQLLJ. (In Russian).
7. Dubenok N.N., Mayer A.V., 2022. Mnogoletnie issledovaniya gidrotermicheskogo rezhima agrotsenozov i sistemy kombinirovannogo orosheniya dlya yego regulirovaniya [Long-term studies of the hydrothermal regime of agrocenoses and combined irrigation systems for its regulation]. Rossiyskaya sel'skokhozyaystvennaya nauka [Russian Agricultural Science], no. 2, pp. 3-7, DOI: 10.31857/S2500262722020016, EDN: FZVSGD. (In Russian).
8. Novikov A.E., Lamskova M.I., 2014. Issledovanie poter' napora i ravnomernosti raskhoda zhidkostey v kapel'nykh truboprovodakh [Study of pressure losses and uniformity of liquid flow in drip pipeline]. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional'noe obrazovanie [Proceedings of Lower Volga Agro-University Complex: Science and Higher Education], no. 2(34), pp. 89-95, EDN: SFFLAZ. (In Russian).
9. Novikov A.E., Lamskova M.I., Motorin V.A., Nekrasova V.V., 2014. Gidravlicheskiy raschet polivnykh truboprovodov sistem kapelnogo orosheniya [Hydraulic calculation for irrigation pipes of drip irrigation systems]. Prirodoobustroystvo [Environmental Engineering], no. 2, pp. 29-33, EDN: QJKXZJ. (In Russian).
10. Semerdzhyan A.K., Orekhova V.I., Kondratenko L.N., Melnik K.V., Chichkin D.V., 2023. Matematicheskoe modelirovanie dvizheniya zhidkosti v polivnykh i uchastkovykh truboprovodakh sistem kapel'nogo orosheniya [Mathematical modeling of fluid motion in irrigation and district pipes of drip irrigation systems]. Melioratsiya i vodnoe khozyaystvo [Land Reclamation and Water Management], no. 4, pp. 7-10, DOI: 10.32962/0235-2524-2023-4-7-10, EDN: USTWWZ. (In Russian).
11. Lytov M.N., 2021. [Determining the quantitative parameters of the hydraulic model of combined irrigation systems based on the computer calculations algorithmization]. Nauchnyy zhurnal Rossiyskogo NII problem melioratsii, vol. 11, no. 1, pp. 129-146, available: https:ros-niipm-sm.ru/article?n=1182 [accessed 01.03.2024], DOI: 10.31774/2222-1816-2021-11-1-129-146, EDN: TOCIDG. (In Russian).
12. Gherciuc I., Coşuleanu T., 2010. Metodica calculării hidraulice a ţevilor de udare în sistemele de irigare prin picurare [Hydraulic calculation method of the irrigation pipelines in drip irrigation systems]. Stiinta Agricola [Agricultural Science], no. 2, pp. 78-82, EDN: PWLYWZ. (In Romanian).
13. Novikov A.E., Lamskova M.I., Samofalova L.V., Filimonov M.I., 2016. [Simulating fluid movement in drip pipelines based on the field study results]. Nauchnyy zhurnal Rossiyskogo NII problem melioratsii, no. 1(21), pp. 21-34, available: https:rosniipm-sm.ru/article?n=1060 [accessed 01.03.2024], EDN: VQUGFB. (In Russian).
14. Abduraimova D., Otakhonov M., Jalilov S., Vokhidova U., 2022. Hydraulic calculation of lateral in drip irrigation. IOP Conference Series: Earth and Environmental Science, vol. 1112, no. 1, 012132, DOI: 10.1088/1755-1315/1112/1/012132, EDN: DDXRST.