Founder and publisher – Russian Scientific Research Institute of Land Improvement Problems
Land Reclamation and Hydraulic Engineering Melioraciâ i gidrotehnika
ISSN 2712-9357
RUS / ENG

APPROACHES TO REDUCING THE NEGATIVE CONSEQUENCES OF USING BRACKISH AND LOW-MINERALIZED WATERS IN IRRIGATED AGRICULTURE

Annotation

Purpose: to identify the most suitable measures aimed at achieving the rational use of brackish and low-mineralized water resources for the Republic of Crimea, based on an analysis of foreign and domestic experience in ensuring the environmental safety of irrigation with limitedly suitable waters.

Discussion: during the study, a review of foreign and domestic developments to reduce (prevent) the negative impact of irrigation with limitedly suitable water resources on soil and crops and an analysis of approaches, implemented in the Crimean region, aimed at ensuring environmental safety of using brackish and low-mineralized waters in irrigated agriculture was carried out. It has been found that the main technological solutions aimed at reducing the negative impact of using limitedly suitable water in agriculture include: determining the maximum permissible mineralization of irrigation water from an ecological and economic point of view, reducing irrigation rates, selecting effective agronomic practices, justification the irrigation method and preliminary water treatment, carrying out washing with fresh water, forecasting and modeling of the water-salt regime. The first four approaches are mainly used in the Republic of Crimea. In general, their use makes it possible to prevent a significant decrease in crop yields and the intensive development of soil degradation processes.

Conclusions: to ensure the environmental safety of irrigation with limitedly suitable waters, approaches that include the use of water resources with mineralization up to 3 g/l in combination with water-saving irrigation methods, reduction of irrigation rates and the application of chemical ameliorants, it is advisable to supplement with annual water quality and soil condition monitoring, as well as to provide for forecasting the salt regime of the fertile layer in the future.

doi: 10.31774/2712-9357-2023-13-4-224-242

Keywords

irrigation, environmental safety, water quality, soil, salt regulation

For quoting

Volkova N. E., Kremenskoy V. I. Approaches to reducing the negative consequences of using brackish and low-mineralized waters in irrigated agriculture. Land Reclamation and Hydraulic Engineering. 2023;13(4):224–242. (In Russ.). https://doi.org/10.31774/2712-9357-2023-13-4-224-242.

Authors

N. Е. Volkova – Senior Researcher, Research Institute of Agriculture of Crimea, Simferopol, Russian Federation, volkova_n@niishk.site, https://orcid.org/0000-0002-3146-652X;

V. I. Kremenskoy – Researcher, Research Institute of Agriculture of Crimea, Simferopol, Russian Federation, kvi19497@rambler.ru, https://orcid.org/0000-0002-7427-4747.

Bibliography

1. Zheng C., Feng D., Li K., Ma J., Dang H., Cao C., Sun J., Zhang J., 2020. Effects of furrow irrigation with saline water on variation of soil water-salt, cotton growth and yield. Transactions of the Chinese Society of Agricultural Engineering, vol. 36, iss. 13, pp. 92-101, DOI: 10.11975/ j.issn.1002-6819.2020.13.011.

2. Jiao Y., Wang H., Zhang S., Chen W., Zheng C., 2021. Effects of sprinkling irrigation with brackish and fresh water mixing on yield of wheat and maize and movement of soil water and salt. Agricultural Research in the Arid Areas, vol. 39, iss. 6, pp. 87-94.

3. Klimenko O.E., Evtushenko A.P., Klimenko N.I., 2022. Izmenenie solevogo sostava pochv pri oroshenii solonovatymi vodami v Stepnom Krymu [Changes in salt composition of soils under irrigation with brackish water in the Steppe Crimea]. Pochvovedenie [Eurasian Soil Science], no. 12, pp. 1557-1570, DOI: 10.31857/S0032180X22100471. (In Russian).

4. Mityaeva L.A., Lyashkov M.A., Domashenko Yu.E., Vasiliev S.M., 2019. Otsenka solevogo sostava chernozema obyknovennogo posle poliva stochnymi vodami razlichnogo kachestva v laboratornykh usloviyakh [Evaluation of the salt composition of ordinary chernozem after irrigation with wastewater of various qualities in laboratory conditions]. Puti povysheniya effektivnosti oroshaemogo zemledeliya [Ways of Increasing the Efficiency of Irrigated Agriculture], no. 3(75), pp. 106-110. (In Russian).

5. Yuldashev G.Yu., Darmonov D.E., 2020. Vliyanie polivov mineralizovannymi vodami na solevoy balans oroshaemykh lugovykh sazovykh pochv [Influence of irrigation by mineralized waters on the salt balance of irrigated meadows sasa soil]. Nauchnoe obozrenie. Biologicheskie nauki [Scientific Review. Biological Sciences], no. 1, pp. 26-30. (In Russian).

6. Abdrakhmanov R.F., Khasanova L.M., 2018. Oroshenie mnogoletnikh trav i ovoshchnykh kul'tur vodami povyshennoy mineralizatsii [Irrigation of perennial grasses and vegetable crops with water of high mineralization]. Vestnik Bashkirskogo gosudarstvennogo agrarnogo universiteta [Bull. of Bashkir State Agrarian University], no. 2(46), pp. 7-16, DOI: 10.31563/1684-7628-2018-46-2-7-16. (In Russian).

7. Darmonov E.D., Yuldashev G., Turdaliev A.T., 2021. Vliyanie polivov mineralizovannymi vodami na agrobiologicheskie osobennosti i urozhaynost' pshenitsy [Influence of irrigation with mineralized water on agrobiological features and wheat yield]. Nauchnoe obozrenie. Biologicheskiye nauki [Scientific Review. Biological Sciences], no. 4, pp. 23-27, DOI: 10.17513/srbs.1239. (In Russian).

8. Vasiliev D.G., Chelakhov V.Ts., Domashenko Yu.E., Vasiliev S.M., 2019. Ekologicheskoe obosnovanie primeneniya drenazhnogo stoka pri oroshenii sel'skokhozyaystvennykh ugodiy [Ecological justification of drainage flow use for irrigation of agricultural land]. Ekologiya i vodnoe khozyaystvo [Ecology and Water Management], no. 3(3), pp. 1-13, DOI: 10.31774/2658-7890-2019-3-1-13. (In Russian).

9. Bezdnina S.Ya., 2013. Nauchnye osnovy otsenki kachestva vody dlya orosheniya: monografiya [Scientific Basis for Assessing the Quality of Water for Irrigation: monograph]. Ryazan, Mesherskiy Scientific-Technical Center, 171 p. (In Russian).

10. Doneen L.D., 1964. Water Quality for Agriculture. California, Department of Irrigation, 48 p.

11. Ayers R.S., Westcot D.W., 1976. Water Quality for Agriculture. FAO Irrigation and Drainage Paper, vol. 29, 107 p.

12. Shuravilin A.V., Mozhaisky Yu.A., 2011. Praktikum po melioratsii sel'skokhozyaystvennykh zemel': uchebnoe posobie [Workshop on Agricultural Land Reclamation: textbook]. Ryazan, RGATU Publ., 214 p. (In Russian).

13. Kostyakov A.N., 1960. Osnovy melioratsiy [Fundamentals of Land Reclamation]. Moscow, Selkhozgiz Publ., 621 p. (In Russian).

14. Wang H., Feng D., Zhang A., Zheng C., Li K., Ning S., Zhang J., Sun C., 2022. Effects of saline water mulched drip irrigation on cotton yield and soil quality in the North China Plain. Agricultural Water Management, vol. 262, no. 107405, DOI: 10.1016/j.agwat. 107405.

15. Li D., Wan S., Li X., Kang Y., Han X., 2022. Effect of water-salt regulation drip irrigation with saline water on tomato quality in an arid region. Agricultural Water Management, vol. 261, no. 107347, DOI: 10.1016/j.agwat.2021.107347.

16. Yuldashev Kh.U., 2021. Kachestvennaya otsenka khimicheskogo sostava orositel'nykh vod i ikh gidrokhimicheskaya gradatsiya [Qualitative assessment of the chemical composition of irrigation water and their hydrochemical gradation]. Doklady Tadzhikskoy akademii sel'skokhozyaystvennykh nauk [Reports of Tajik Academy of Agricultural Sciences], no. 2(68), pp. 34-39. (In Russian).

17. Volkova N.E., Podovalova S.V., Yunchik Yu.A., Manzhos A.A., 2023. [Justification for choosing irrigation water source in the steppe zone of Crimea]. Melioratsiya i gidrotekhnika, vol. 13, no. 2, pp. 75-93, available: http:www.rosniipm-sm.ru/article?n=1356 [accessed 01.09.2023], DOI: 10.31774/2712-9357-2023-13-2-75-93. (In Russian).

18. Malash N., Flowers T.J., Ragab R., 2008. Effect of irrigation methods, management and salinity of irrigation water on tomato yield, soil moisture and salinity distribution. Irrigation Science, vol. 26, iss. 4, pp. 313-323, DOI: 10.1007/s00271-007-0095-7.

19. Praxedes S.S.C., Da Silva Junior M.J., Medeiros J.F., Silva J.L.A., Da Silva F.V., Targino A.J.O., 2019. Performance of Tanzania grass irrigated with saline water applied via spray and dripping. Irriga, vol. 24, iss. 2, pp. 236-253.

20. Grieve C.M., Wang D., Shannon M.C., 2003. Salinity and irrigation method affect mineral ion relations of soybean. Journal of Plant Nutrition, vol. 26, iss. 4, pp. 901-913, DOI: 10.1081/PLN-120018573.

21. Shevchenko V.A., Gubin V.K., Kudryavtseva L.V., 2021. Tekhnologiya opresneniya vody dlya orosheniya sadov i vinogradnikov Kryma [Technology of water desalination for irrigation of orchards and vineyards of the Crimea]. Selskiy mekhanizator [Rural Mechanizer], no. 5, pp. 28-30, DOI: 10.47336/0131-7393-2021-5-28-29-30. (In Russian).

22. Igenbaev N.B., Anuarbekov K.K., 2020. Sostoyanie plodorodiya pochvy pri polive stochnymi vodami na yuge Kazakhstana [State of soil fertility when irrigated with wastewater in the south of Kazakhstan]. Innovatsionnye idei molodykh issledovateley: sb. st. po materialam mezhdunarodnoy nauchno-prakticheskoy konferentsii [Innovative Ideas of Young Researchers: Proc. of the International Scientific-Practical Conference], pp. 55-63. (In Russian).

23. Liu X., Ding B., Bai Y., 2020. Effects of drip irrigation brackish water under film mulch on salinity, nutrients and quality of cotton plants. Agricultural Research in the Arid Areas, vol. 38, iss. 4, pp. 128-135.

24. Belokon P.I., Belokon S.I., Titova Yu.A., Yusupov I.A., 2018. Ispol'zovanie kollektorno-drenazhnykh vod dlya orosheniya zemel' Sokulukskogo rayona Chuyskoy oblasti [Use of collector-drainage water for irrigation of lands in the Sokuluk district of the Chui region]. Izvestiya KGTU im. I. Razzakova [Bulletin of KSTU named after I. Razzakov], no. 1(45), pp. 266-275. (In Russian).

25. Manzhina S.A., Vlasov M.V., 2023. [Agroecological assessment of domestic wastewater for irrigation purposes]. Melioratsiya i gidrotekhnika, vol. 13, no. 1, pp. 132-149, available: http:www.rosniipm-sm.ru/article?n=1345 [accessed 01.09.2023], DOI: 10.31774/2712-9357-2023-13-1-132-149. (In Russian).

26. Alsuvaid M., Demir Y., Kiremit M.S., Arlsan H., 2022. Interaction effect of water magnetization and water salinity on yield, water productivity and morpho-physiological of Balkiz bean (Phaseolus vulgaris). Gesunde Pflanzen, vol. 74, iss. 3, pp. 259-274, DOI: 10.1007/s10343-021-00606-x. 

27. Surendran U.P., Sandeep O., Joseph E.J., 2016. The impacts of magnetic treatment of irrigation water on plant, water and soil characteristics. Agricultural Water Management, vol. 178, pp. 21-29, DOI: 10.1016/j.agwat.2016.08.016.

28. Hamza A.H., Sbreif M.A., El-Azeim A., Mohamad M., Mahamed W.A., 2021. Impacts of magnetic field treatment on water quality for irrigation, soil properties and maize yield. Journal of Modern Research, vol. 3, iss. 1, pp. 51-61.

29. Martinez-Granados D., Marin-Membrive P., Calatrava J., 2022. Economic assessment of irrigation with desalinated seawater in greenhouse tomato production in SE Spain. Agronomy, vol. 12, iss. 6, no. 1471, DOI: 10.3390/agronomy12061471.

30. Melgarejo-Moreno J., López-Ortiz M.I., Fernández-Aracil P., 2019. Water distribution management in South-East Spain: A guaranteed system in a context of scarce resources. Science of the Total Environment, vol. 648, pp. 1384-1393, DOI: 10.1016/j.scitotenv.2018.08.263.

31. Khamidov M.Kh., Zhuraev U.A., 2018. Snizhenie mineralizatsii kollektorno-drenazhnykh vod biologicheskim sposobom s ispol'zovaniem ikh v oroshaemom zemledelii [The reduction of mineralization of collector and drainage waters by a biological method and their use in irrigated agriculture]. Agrarnaya nauka [Agrarian Science], no. 10, pp. 52-54, DOI: 10.3263/0869-8155-2018-319-10-52-54. (In Russian).

32. Domashenko Yu.E., Protsenko N.N., 2022. Retrospektivnyy obzor tekhnologiy ochistki i podgotovki drenazhnykh vod s orositel'nykh sistem [Retrospective review of drainage water cleaning and treatment technologies from irrigation systems]. Ekologiya i vodnoe khozyaystvo [Ecology and Water Management], vol. 4, no. 3, pp. 58-72, DOI: 10.31774/2658-7890-2022-4-3-58-72. (In Russian).

33. Vasiliev D.G., 2018. Retekhnologizatsiya sposoba podgotovki drenazhnykh i sbrosnykh vod dlya orositel'nykh melioratsiy [Retechnologization of the method of preparing drainage and wastewater for irrigation reclamation]. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta [Bull. of Orenburg State Agrarian University], no. 5(73), pp. 157-160. (In Russian).

34. Bezborodov Yu.G., Khozhanov N.N., Mirdadaev M.S., Ustabaev T.Sh., 2022. Metodologiya povtornogo ispol'zovaniya drenazhno-sbrosnykh vod v Kazakhstane [Methodology of recycling of drainage and wastewater in Kazakhstan]. Agrarnyy nauchnyy zhurnal [Agricultural Scientific Journal], no. 11, pp. 96-99. DOI: 10.28983/asj.y2022i11pp96-99. (In Russian).

35. Li H., Zhi Y., Lei C., Zhao L., An S., Deng Z., Zhou C., 2010. Plant growth, reproduction and biomass allocation in response to clonal plant Spartina anglica to alternative irrigation of fresh and saline water. Acta Ecologica Sinica, vol. 30, iss. 7, pp. 1744-1750.

36. Zhaparkulova E.D., Nabiollina M.S., Kalieva K., 2019. Vliyanie mineralizatsii kollektorno-drenazhnykh vod na dolyu ikh uchastiya v orositel'noy norme [The effect of mineralization of collector-drainage waters on share of its participation in irrigation norm]. Nauka i mir [Science and World], no. 7-1(71), pp. 51-55. (In Russian).

37. Wan S., Kang Y., Wang D., Liu S., 2010. Effect of saline water on cucumber (Cucumis sativus L.) yield and water use under drip irrigation in the North China. Agricultural Water Management, vol. 98, pp. 105-113, DOI: 10.1016/j.agwat.2010.08.003.

38. Kang Y., Wang R., Wan S., Hu W., Jiang S., Liu S., 2012. Effect of different water levels on cotton growth and water use through drip irrigation in an arid region with saline ground water of Northwest China. Agricultural Water Management, vol. 109, pp. 117-126, DOI: 10.1016/j.agwat.2012.02.013.

39. Dedova E.B., 2022. Tekhnologiya ispol'zovaniya mineralizovannoy vody dlya poliva kormovykh kul'tur [Technology of using mineralized water for forage crops irrigation of]. Agrarnaya nauka [Agrarian Science], no. 355(1), pp. 114-117, DOI: 10.32634/0869-8155-2022-355-1-114-117. (In Russian).

40. Shalashova O.Yu., Pyatnitsyna E.V., Rubtsov I.P., 2023. [The role of crop rotation in maintaining agrophysical properties of chernozem irrigated with low-mineralized water]. Melioratsiya i gidrotekhnika, vol. 13, no. 1, pp. 150-164, available: http:www.rosniipm-sm.ru/article?n=1346 [accessed 01.09.2023], DOI: 10.31774/2712-9357-2023-13-1-150-164. (In Russian).

41. Jifang E., Shuging Y., Shuai L., Peng L., Yohong J., 2021. Effects of straw returning to field on soil salinity content and maize yield under alternate irrigation of canal-well. Transactions of the Chinese Society for Agricultural Machinery, vol. 52, iss. 12, pp. 336-345.

42. Sony P.G., Rai A.K., Basak N., Kumar P., Sundha P., 2021. Productivity and profitability of sorghum-wheat cropping system in saline soils as influenced by conservation agriculture practices. Range Management and Agroforestry, vol. 42, iss. 2, pp. 277-285.

43. Soni P.G., Basak N., Rai A.K., Sundha P., Narjary B., Kumar P., Yadav G., Kumar S., Yadav R.K., 2021. Deficit saline water irrigation under reduced tillage and residue mulch improves soil health in sorghum-wheat cropping system in semi-arid region. Scientific Reports, vol. 11, iss. 1, no. 1880, DOI: 10.1038/s41598-020-80364-4.

44. Rai A.K., Basak N., Sony P.G., Kumar S., Sundha P., Narjary B., Yadav G., Patel S., Kaur H., Yadav R.K., Sharma P.C., 2022. Bioenergy sorghum as balancing feedback loop for intensification of cropping system in salt-affected soils of the semi-arid region: energetics, biomass quality and soil properties. European Journal of Agronomy, vol. 134, no. 126452, DOI: 10.1016/j.eja.2021.126452.

45. Vargas R., Pankova E.I., Balyuk S.A., Krasilnikova P.V., Khasankhanova G.M. (eds), 2017. Rukovodstvo po upravleniyu zasolennymi pochvami [Handbook for the Saline Soils Management]. Rome, FAO, 153 p. (In Russian).

46. Ma H., Wang X., Zhang Z., Feng G., Lü N., 2015. Numerical simulation of water-salt distribution under brackish water film hole furrow irrigation based on HYDRUS-3D model. Transactions of the Chinese Society for Agricultural Machinery, vol. 46, iss. 2, pp. 137-145, DOI: 10.6041/j.issn.1000-1298.2015.02.021.

47. Ning S.R., Zhou B.B., Shi J.C., Wang Q.J., 2021. Soil water/salt balance and water productivity of typical irrigation schedules for cotton under film mulched drip irrigation in Northern Xinjiang. Agricultural Water Management, vol. 245, no. 106651, DOI: 10.1016/j.agwat.2020.106651.

48. Ning S., Yan A., Zhou B., Wang Q., 2022. Modeling salinity risk response to irrigation practices for cotton production under film mulched drip irrigation in Xinjiang. Water Supply, vol. 22, iss. 1, pp. 321-334, DOI: 10.2166/ws.2021.270.

49. Polovetsky I.Ya., Gusev P.G., 1987. Pochvy Kryma i povyshenie ikh plodorodiya: sprav. izd. [Soils of Crimea and the Increasing of Their Fertility: reference book]. Simferopol’, Tavria Publ., 152 p. (In Russian).

Download