Founder and publisher – Russian Scientific Research Institute of Land Improvement Problems
Land Reclamation and Hydraulic Engineering Melioraciâ i gidrotehnika
ISSN 2712-9357
RUS / ENG

SYSTEM WATER DISTRIBUTION CONTROL BASED ON ECONOMIC AND MATHEMATICAL MODELING AND ARTIFICIAL INTELLIGENCE METHODS

Annotation

Purpose: scientific substantiation of methodological and information support for decision-making on water distribution in inter-farm irrigation systems. 

Materials and methods. The studies were carried out at the Gorodischenskaya irrigation system, which is typical for the conditions of the arid Volgograd region. The methodological basis of the study was systematic, comparative, heuristic and mathematical-statistical approaches. The implemented methods of formalized decision-making support include mathematical optimization, as well as forecasting the expected result, including on the basis of artificial intelligence methods.

Results. Methodological approaches to planning system water distribution under conditions of water scarcity or under limited production and economic conditions are considered. The analysis of the methodology on managerial decision-making support based on artificial intelligence methods is carried out. The main requirements for the priority methods of information support of control actions are determined, including their practical applicability, rationality of the planned results, as well as ensuring sufficient accuracy of solving the optimization problem. Criteria for optimizing water distribution planning under conditions of low-water irrigation source or with limited production and economic conditions are systematized. It has been determined that using mathematical modeling and artificial intelligence contributes to the development of information technologies for optimizing water distribution. A basic economic-mathematical model including the gross output as a target function has been developed and tested.

Conclusions. Testing the model on the materials of the Gorodischenskaya irrigation system data showed the possibility of increasing production up to 78.8 thousand rubles/ha. This is achieved by improving the quality of planning and management of water distribution under the conditions of water scarcity in the Lower Volga region.

doi: 10.31774/2712-9357-2023-13-3-87-106

Keywords

agricultural production, water saving, system water distribution, decision support, mathematical modeling, artificial intelligence

For quoting

Rogachev D. A., Yurchenko I. F., Rogachev A. F. System water distribution control based on economic and mathematical modeling and artificial intelligence methods. Land Reclamation and Hydraulic Engineering. 2023;13(3):87–106. (In Russ.). https://doi.org/10.31774/2712-9357-2023-13-3-87-106.

Authors

D. A. Rogachev – Leading Researcher, Candidate of Technical Sciences, All-Russian Research Institute of Hydraulic Engineering and Land Reclamation named after A. N. Kostyakov, Moscow, Russian Federation, Rogachev.soft@gmail.com

I. F. Yurchenko – Chief Researcher, Doctor of Technical Sciences, Associate Professor, All-Russian Research Institute of Hydraulic Engineering and Land Reclamation named after A. N. Kostyakov, Moscow, Russian Federation, Irina.507@mail.ru

A. F. Rogachev – Professor of the Department of Mathematical Modeling and Computer Science, Doctor of Technical Sciences, Professor, Volgograd State Agricultural University, Volgograd, Russian Federation, Rafr@mail.ru

Bibliography

1. Shchedrin V.N., Vasiliev S.M., Dokuchaeva L.M., Yurkova R.E., Chelakhov V.Ts., Shalashova O.Yu., 2019. Sistema meliorativnykh meropriyatiy po regulirovaniyu pochvennykh protsessov, sposobstvuyushchikh povysheniyu plodorodiya razlichnykh tipov pochv i uluchsheniyu ekologicheskogo sostoyaniya oroshaemykh zemel': monografiya [The System of Reclamation Measures to Regulate Soil Processes Contributing to Increasing the Fertility of Various Types of Soils and Improving the Ecological State of Irrigated Lands: monograph]. Novocherkassk, 77 p. (In Russian). 

2. Kruzhilin I.P., Ganiev M.A., Rodin K.A., Kuznetsova N.V., 2019. Menee vodozat-ratnaya i ekologicheski predpochtitel'naya tekhnologiya orosheniya risa periodicheskimi polivami [Less water-consuming and environmentally preferable technology for irrigation of rice with periodic irrigation]. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional'noe obrazovanie [Proc. of Lower Volga Agrouniversity Complex: Science and Higher Vocational Education], no. 2(54), pp. 49-55, DOI: 10.32786/2071-9485-2019-02-4. (In Russian).

3. Kireycheva L.V., Yurchenko I.F., 2015. Rol' melioratsii zemel' v reshenii problemy prodovol'stvennoy bezopasnosti Rossii [The role of land reclamation in solving the food security problem of Russia]. Vestnik rossiyskoy sel'skokhozyaystvennoy nauki [Bulletin of Russian Agricultural Science], no. 2, pp. 13-15. (In Russian). 

4. Kireycheva L.V., Timoshkin A.D., Avetisyan A.L., 2022. Informatsionno-kommuni-katsionnaya sistema regulirovaniya parametrov meliorativnogo sostoyaniya agroekosistemy [Information and communication system for regulating the parameters of the reclamation state of the agroecosystem]. Prirodoobustroystvo [Environmental Engineering], no. 3, pp. 13-18, DOI: 10.26897/1997-6011-2022-3-13-18. (In Russian).

5. Voronkova O.Yu., Baryshnikov G.Ya., Elchishchev E.A., 2018. Osobennosti primeneniya ekologicheskogo bloka kriterial'nykh ogranicheniy v ekonomiko-matematicheskom modelirovanii razvitiya organicheskogo sel'skokhozyaystvennogo proizvodstva [The features of the application of the environmental block of criterial limits in economic and mathematical modeling of the development of organic agricultural production]. Vestnik Altayskogo gosudarstvennogo agrarnogo universiteta [Bulletin of Altai State Agrarian University], no. 1(159), pp. 81-86. (In Russian).

6. Ovchinnikov A.S., Pronko N.A., Falkovich A.S., Borodychev V.V., 2018. Prichiny vtorichnogo zasoleniya oroshaemykh pochv Nizhnego Povolzh'ya i ego prognozirovanie na osnove matematicheskogo modelirovaniya vlagoperenosa [Causes of secondary salinization of irrigated soils of the Lower Volga region and its forecasting based on mathematical modeling of moisture transport]. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional'noe obrazovanie [Proc. of Lower Volga Agrouniversity Complex: Science and Higher Vocational Education], no. 2(50), pp. 9-17. (In Russian).

7. Salugin A.N., Petrov V.I., 2017. Sistemnaya dinamika v imitatsionnom modelirovanii vodnogo rezhima orosheniya [System dynamics in simulation modeling of irrigation water regime]. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional'noe obrazovanie [Proc. of Lower Volga Agrouniversity Complex: Science and Higher Vocational Education], no. 4, pp. 141-146. (In Russian).

8. Kucher D.E., Kharchenko S.G., 2022. Nekotorye podkhody k strategii ekologiches-koy bezopasnosti [Some of environmental safety strategy approaches]. Ekologiya i promyshlennost' Rossii [Ecology and Industry of Russia], no. 10, pp. 66-71, https:doi.org/10.18412/1816-0395-2022-10-66-71. (In Russian). 

9. Pichugin E.A., Shenfeld B.E., 2022. Ispol'zovanie dannykh distantsionnogo zondirovaniya Zemli pri ekologicheskoy otsenke ob"ektov negativnogo vozdeystviya na okruzhayushchuyu sredu I i II kategoriy [The use of Earth Remote Sensing Data in the environmental assessment of objects that have a negative impact on the environment, impact categories I and II]. Ekologiya i promyshlennost' Rossii [Ecology and Industry of Russia], no. 10, pp. 40-44, https:doi.org/10.18412/1816-0395-2022-10-40-44. (In Russian).

10. Kardash V.A., 2008. Protsessnyy analiz sistemnoy dinamiki [Process analysis of system dynamics]. Obozrenie prikladnoy i promyshlennoy matematiki [Review of Applied and Industrial Mathematics], vol. 15, no. 5, pp. 807-818. (In Russian).

11. Shemyakina T.A., 2020. Matematicheskoe modelirovanie v obratnykh zadachakh ekologii neyrosetevym priblizheniem i metodom dopolnitel'nogo argumenta [Mathematical modeling in inverse problems of ecology by neural network approximation and the method of additional argument]. Neyrokomp'yutery i ikh primenenie: tezisy dokl. XVIII Vserossiyskoy nauchnoy konferentsii [Neurocomputers and Their Application: Abstracts of Reports of the XVIII All-Russian Scientific Conference]. Moscow, MGPPU, pp. 269-270. (In Russian). 

12. Rogachev A.F., 2021. Creating an artificial neural network for predicting the dynamics of retrospective yield series. J. Phys.: Conf. Ser., 2060, 012027, DOI: 10.1088/1742-6596/2060/1/012027.

13. Mishra P., 2022. Practical Explainable AI Using Python. Artificial Intelligence Model Explanations Using Python-Based Libraries, Extensions, and Frameworks. 1st ed., Мoscow, DMK Press Publ., 298 p.

14. Bandurin M.A., Yurchenko I.F., Bandurina I.P., 2019. Computer technology to assess the capacity reserve of the irrigation facilities of the agro-industrial complex. 2019 International Multi Conference on Industrial Engineering and Modern Technologies, FarEastCon Vladivostok. Institute of Electrical and Electronics Engineers Inc., 8933970, DOI: 10.1109/FarEastCon.2019.8933970.

15. Dubenok N.N., Mayer A.V., 2021. Management of the technological process of irrigation of garden plants. IOP Conference Series: Earth and Environmental Science. Vol. 786. Mathematical Modeling of Technical and Economic Systems in Agriculture III-2020. 012029, DOI: 10.1088/1755-1315/786/1/012029.

16. Dubenok N.N., Mayer A.V., 2021. Upravlenie tekhnologiey orosheniya mnogoletnikh nasazhdeniy pri dozhdevanii [Control of irrigation technology for permanent plants with sprinkling]. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional'noe obrazovanie [Proc. of Lower Volga Agrouniversity Complex: Science and Higher Vocational Education], no. 3(63), pp. 311-318, DOI: 10.32786/2071-9485-2021-03-32. (In Russian).

17. Olgarenko V.I., Yurchenko I.F., Olgarenko I.V., Kostyunin G.G., Efendiev M.S., Olgarenko V.Ig., 2018. [Planning effectiveness substantiation of technological processes of water use and operating control of water distribution using the Monte Carlo method]. Nauchnyy zhurnal Rossiyskogo NII problem melioratsii, no. 1(29), pp. 49-65, available: http:www.ros-niipm-sm.ru/article?n=913 [accessed 01.05.2023]. (In Russian). 

18. Rogachev A.F., Melikhova E.V., Ryzhova T.A., Belousov I.S., 2020. Neyrosetevaya klassifikatsiya sostoyaniya posevov sel'skokhozyaystvennykh kul'tur po tsvetnym izobrazheniyam vysokogo razresheniya [Neural network classification of the state of agricultural crops sowing on high-resolution color images]. Certificate of State Software Registration for Computer, no. 2020611604. (In Russian).

19. Ben-Shahar O., 2019. Data pollution. Journal of Legal Analysis, vol. 11, pp. 104-159, DOI: 10.1093/jla/laz005.

Download