Founder and publisher – Russian Scientific Research Institute of Land Improvement Problems
Land Reclamation and Hydraulic Engineering Melioraciâ i gidrotehnika
ISSN 2712-9357
RUS / ENG

USING NUMERICAL MODELING FOR CALCULATION OF WIND WAVES AT THE KRYUKOVSKIY RESERVOIR

Annotation

Purpose: testing the possibilities of using the SWAN wind wave model with input characteristics according to the data of the Krasnodar (Pashkovskiy) weather station for the Kryukovskiy reservoir. 

Materials and methods. The studies were carried out at the Kryukovskiy reservoir, taking into account the conditions of formation of the processes of environment-improving potential formation of the territory in southern Russia, which guarantees the reliability and environmental safety of the facility operation under conditions of an increasing risk of natural and man-made disasters on the example of the Krasnodar Territory. Field studies and field tests were carried out according to the Kuban State Agrarian University methods. When modeling the surge overwash for two different profiles (Northern and Western water barrier dams), the SWAN model data in a one-dimensional version were compared with the data obtained by SP 38.13330.2012. 

Results. The SWASH model provides reliable results and is an adequate alternative calculation option. Wave field data, which provides a good foundation for further study of the climatic variability of wind waves in the Kryukovskiy reservoir have been obtained. 

Conclusions. As a result of surge overwash modeling for two profiles under study, it was found that on average, the marks of the existing water barrier dam slope are higher than the surge in the design storm, mainly by 0.55–0.75 m, however, at PK 9 + 00 it was revealed that the slope top elevation of the Northern water protection dam corresponds to the overwash mark. Therefore, it is necessary to continue research on monitoring the engineering protection of the Kryukovskiy reservoir using mathematical modeling, which confirmed the effectiveness and information content of the applicable SWAN model at a relatively low cost.

doi: 10.31774/2712-9357-2023-13-2-353-378

Keywords

wind waves, water barrier dam, mathematical modeling, surge overwash, wind regime

For quoting

Prikhodko I. A., Bandurin M. A., Volosukhin V. A., Verbitsky A. Yu. Using numerical modeling for calculation of wind waves at the Kryukovskiy reservoir. Land Reclamation and Hydraulic Engineering. 2023;13(2):353–378. (In Russ.). https://doi.org/10.31774/2712-9357-2023-13-2-353-378.

Authors

I. A. Prikhodko – Head of the Department of Construction and Operation of Water Management Facilities, Candidate of Technical Sciences, Associate Professor, Kuban State Agrarian University named after I. T. Trubilin, Krasnodar, Russian Federation, prihodkoigor2012@yandex.ru

M. A. Bandurin – Dean of the Faculty of Hydroreclamation, Doctor of Technical Sciences, Associate Professor, Kuban State Agrarian University named after I. T. Trubilin, Krasnodar, Russian Federation, chepura@mail.ru

V. A. Volosukhin – Professor of the Department of Strength of Materials, Doctor of Technical Sciences, Professor, Kuban State Agrarian University named after I. T. Trubilin, Krasnodar, Russian Federation, director@ibgts.ru

A. Yu. Verbitsky – Master's Student, Kuban State Agrarian University named after I. T. Trubilin, Krasnodar, Russian Federation, trd.uncle@yandex.ru

Bibliography

1. Bandurin M.A., Volosukhin V.A., Gumbarov A.D., Prikhodko I.A., 2022. Monitoring bezopasnosti vodoprovodyashchikh sooruzheniy orositel'nykh risovykh sistem yuga Rossii pri vozrastayushchikh klimaticheskikh izmeneniyakh [Monitoring the Safety of Water Supply Facilities of Irrigation Rice Systems in the South of Russia under Increasing Climatic Changes]. Moscow, Rusayns Publ., 194 p. (In Russian).

2. Prikhodko I.A., Bandurin M.A., Yakuba S.N., 2022. Puti resheniya sovershenstvovaniya ratsional'nogo prirodopol'zovaniya v granitsakh meliorativno-vodokhozyaystvennogo kompleksa Nizhney Kubani [Ways of improving sustainable nature management within the boundaries of the Lower Kuban reclamation and water industry complex]. Rol' melioratsii v obespechenii prodovol'stvennoy bezopasnosti: materialy mezhdunar. nauchno-prakticheskoy konferentsii [The Role of Reclamation in Ensuring Food Security: Proceedings of the International Scientific-Practical Conf.]. Moscow, A.N. Kostyakov VNIIGiM, pp. 100-107. (In Russian).

3. Volosukhin V.A., Bandurin M.A., Prikhodko I.A., Evteeva I.D., 2022. Imitatsionnoe modelirovanie ustoychivosti ograditel'nykh damb reki Psekups v usloviyakh vozrastayushchikh staticheskikh i seysmicheskikh vozdeystviy [Simulation modeling of stability of Psekups River protective barrier dams under increasing static and seismic impacts]. Mezhdunarodnyy sel'skokhozyaystvennyy zhurnal [International Agricultural Journal], no. 5(389), pp. 459-463, DOI: 10.55186/25876740_2022_65_5_459. (In Russian).

4. Volosukhin V.A., Bandurin M.A., Prikhodko I.A., 2022. Izmenenie klimata: prichiny, riski dlya vodokhozyaystvennogo kompleksa Krasnodarskogo kraya [Climate change: causes, risks for the water management complex of the Krasnodar Territory]. Prirodoobustroystvo [Environment Engineering], no. 4, pp. 50-56, DOI: 10.26897/1997-6011-2022-4-50-56. (In Russian).

5. Balakay G.T., Yurchenko I.F., Lentyaeva E.A., Yalalova G.Kh., 2016. Bezopasnost' beskhozyaynykh gidrotekhnicheskikh sooruzheniy. Bezopasnost' beskhozyaynykh gidrotekhnicheskikh sooruzheniy meliorativnogo vodokhozyaystvennogo kompleksa [Security Ownerless Hydraulic Engineering Structures. Safety of Ownerless Hydraulic Structures of Ameliorative Water Management Complex]. Germany, LAP Lambert Publ., 85 p. (In Russian).

6. Kosichenko Yu.M., Baev O.A., 2022. Gidrotekhnicheskoe stroitel'stvo [Hydraulic Engineering]. Novocherkassk, RosNIIPM, 313 p. (In Russian).

7. Volosukhin V.A., Bondarenko V.L., 2014. Faktory, opredelyayushchie bezopasnost' gidrotekhnicheskikh sooruzheniy vodokhozyaystvennogo naznacheniya [Factors determining the safety of hydraulic structures for water management purposes]. Nauka i bezopasnost' [Science and Safety], no. 3(12), pp. 7-8. (In Russian).

8. Ivanenko Yu.G., Tkachev A.A., Gurin K.G., 2022. Kriteriy gidrodinamicheskoy ustoychivosti planovogo dvizheniya ruslovogo potoka [Criterion of hydrodynamic stability of the planned movement of the channel flow]. Melioratsiya kak drayver modernizatsii APK v usloviyakh izmeneniya klimata: materialy III Mezhdunar. nauchno-prakicheskoy internet-konferentsii [Land Reclamation as a AIC Modernization Driver under Climate Change: Proceedings of the III International Scientific-Practical Internet Conference]. Novocherkassk, Lik Publ., pp. 149-160. (In Russian).

9. Lappo D.D., Strekalov S.S., Zavyalov V.K., 1990. Nagruzki i vozdeystviya vetrovykh voln na gidrotekhnicheskie sooruzheniya. Teoriya. Inzhenernye metody. Raschety [Loads and Effects of Wind Waves on Hydraulic Structures. Theory. Engineering Methods. Calculations]. VNIIG named after B. E. Vedeneev, Leningrad, 432 p. (In Russian).

10. Zharnitsky V.Ya., Andreev E.V., Silkin A.M., 2019. Uchet vliyaniya volnovykh nagruzok pri formirovanii modeli otsenki ostatochnogo ekspluatatsionnogo resursa GTS [Assessment of the influence of wave loading when forming an evaluation model of the residual operational resource of HES]. Prirodoobustroystvo [Environmental Engineering], no. 1, pp. 6-13. (In Russian).

11. Zharnitsky V.Ya., Andreev E.V., 2019. Uchet vliyaniya inertsionnykh i skorostnykh kriteriyev volnovykh nagruzok v modelyakh otsenki ekspluatatsionnoy nadezhnosti gidrosooruzheniy [The account of influence of inertia and speed criteria of wave loads in the assessment models of operational reliability of hydraulic structures]. Prirodoobustroystvo [Environmental Engineering], no. 3, pp. 62-69, DOI: 10.34677/1997-6011/2019-3-62-69. (In Russian).

12. Kozhevnikov M.P., 1972. Gidravlika vetrovykh voln [Hydraulics Wind Waves]. Moscow, Energy Publ., 264 p. (In Russian).

13. Anosov V.N., 2020. Issledovanie osobennostey regulyarnogo volneniya v usloviyakh predel'nogo melkovod'ya [Investigation of the features of regular waves in extremely shallow water]. Trudy Krylovskogo gosudarstvennogo nauchnogo tsentra [Proceedings of Krylov State Scientific Center], no. 2(392), pp. 15-23. (In Russian).

14. Krylov Yu.M., Strekalov S.S., Tsyplukhin V.F., 1976. Vetrovye volny i ikh vozdeystviya na sooruzheniya [Wind Waves and Their Impact on Structures]. Leningrad, Gidrometeoizdat Publ., 256 p. (In Russian).

15. Christakos K., Björkqvist J.V., Tuomi L., Furevik B.R., Breivik O., 2021. Modelling wave growth in narrow fetch geometries: The white-capping and wind input formulations. Ocean Model, vol. 157, 101730, https:doi.org/10.1016/j.ocemod.2020.101730.

16. Aydoğan B., Ayat B., 2021. Performance evaluation of SWAN ST6 physics forced by ERA5 wind fields for wave prediction in an enclosed basin. Ocean Engineering, vol. 240, 109936, https:doi.org/10.1016/j.oceaneng. 109936.

17. Bellotti G., Franco L., Cecioni C., 2021. Regional downscaling of Copernicus ERA5 wave data for coastal engineering activities and operational coastal services. Water, 13(6), 859, https:doi.org/10.3390/w13060859.

18. Martinelli L., Ruol P., Favaretto C., 2021. Analysis of overflow and wave overtopping of the Scardovari lagoon levees. Proceedings of the 31st International Ocean and Polar Engineering Conference, Rhodes, Greece, 20-25 June.

19. Berdnikov S.V., Dashkevich L.V., Kulygin V.V., Sheverdyaev I.V., Tretyakova I.A., Yaitskaya N.A., 2018. EX-MARE – forecasting system of natural hazards in the Azov Sea region. Geography, Environment, Sustainability, vol. 11, no. 2, pp. 29-45, https:doi.org/10.24057/2071-9388-2018-11-2-29-45.

20. Rubin O.D., Khanov N.V., Lisichkin S.E., Antonov A.S., 2022. Mnogofaktornye issledovaniya gidrotekhnicheskikh sooruzheniy so srokom ekspluatatsii bolee 25 let. Programma mnogofaktornykh issledovaniy GTS. Provedenie naturnykh rabot po kompleksnomu obsledovaniyu i geodezicheskim izmereniyam [Multifactorial Studies of Hydraulic Structures with a Service Life of more than 25 Years: Program of Multifactorial Studies of Hydraulic Structures Conducting Full-Scale Surveys and Geodetic Measurements]. Moscow, K. A. Timiryazev RGAU – MSHA, 111 p. (In Russian).

21. Fartukov V.A., Khanov N.V., 2022. Tekhnologiya Blockchain lokal'nogo monitoringa sostoyaniya i upravleniya gidrotekhnicheskimi sooruzheniyami meliorativnykh sistem [Blockchain technology for local monitoring of the state and management of hydraulic structures of reclamation systems]. Prirodoobustroystvo [Environmental Engineering], no. 4, pp. 96-99, DOI: 10.26897/1997-6011-2022-4-96-99. (In Russian). 

22. Korenovsky A.M., Baklanova D.V., 2016. Otsenka riska avarii gidrotekhnicheskikh sooruzheniy Tayganskogo vodokhranilishcha v Respublike Krym [Assessment of hydraulic structures accident risk of the Taigan reservoir in the Republic of Crimea]. Puti povysheniya effektivnosti oroshaemogo zemledeliya [Ways of Increasing the Efficiency of Irrigated Agriculture], no. 2(62), pp. 113-119. (In Russian). 

Download