Founder and publisher – Russian Scientific Research Institute of Land Improvement Problems
Land Reclamation and Hydraulic Engineering Melioraciâ i gidrotehnika
ISSN 2712-9357
RUS / ENG

INVESTIGATION OF TOTAL STRESSES IN RECTANGULAR SECTION CONDUIT BODY LOCATED ON A CLAY BASE

Annotation

Purpose: to study the total stresses in the rectangular section conduit body TOTAL S-YY and S-XX while analyzing the influence of the soil height above the conduit and the load from the vehicle axle on the conduit. At the same time, the influence factors varied in the range: the soil height above the conduit from 0.5 to 1.2 m, the load from the axle of the car on the conduit from 5 to 40 t. 

Materials and methods. The study of a complex system was carried out in two stages. At the first stage, using a numerical method based on the Midas GTX NX program, which is able to take into account the complex joint work of the conduit structure located in the ground, the stresses in it were calculated. Further, the resulting array of numbers, reflecting the physics of the processes occurring when the response function is influenced, for which the total stresses of the perturbation factors are taken and the height of the soil above the conduit and the load on the conduit from the car, was subjected to digital analysis. 

Results. The total stresses in the conduit at a constant soil height above it are characterized by a very active linear relationship with the force on the soil for both horizontal and vertical stresses. Horizontal stresses S-XX in the range of argument change from 5 to 40 t provide a change in the response function by 28.82 %. At the same time, the vertical S-YY stresses in the conduit at a constant height of the soil above it are almost as linearly active and provide a change in the response function by 24.79 %. 

Conclusions: with an increase in the load from the car on the ground above the conduit, the stresses in the latter have minimal values, which occur at a greater embankment height of the.

doi: 10.31774/2712-9357-2023-13-2-299-317

Keywords

total stresses, conduit structures, numerical experiment, soil height, response function, clay base

For quoting

Degtyarev V. G., Degtyareva O. G., Sekisov A. N. Investigation of total stresses in rectangular section conduit body located on a clay base. Land Reclamation and Hydraulic Engineering. 2023;13(2):299–317. (In Russ.). https://doi.org/10.31774/2712-9357-2023-13-2-299-317.

Authors

V. G. Degtyarev – Associate Professor, Candidate of Technical Sciences, Kuban State Agrarian University named after I. T. Trubilin, Krasnodar, Russian Federation, cst2007@mail.ru

O. G. Degtyareva – Associate Professor, Doctor of Technical Sciences, Associate Professor, Kuban State Agrarian University named after I. T. Trubilin, Krasnodar, Russian Federation, marxotgeo@mail.ru

A. N. Sekisov – Associate Professor, Candidate of Economic Sciences, Associate Professor, Kuban State Agrarian University named after I. T. Trubilin, Krasnodar, Russian Federation, alnikkss@gmail.com

Bibliography

1. Vasiliev S.M., 2020. Vodosberegayushchie tekhnologii orosheniya i ratsional'noe ispol'zovanie vodnykh resursov v APK Rossii [Water-saving irrigation technologies and rational use of water resources in the agro-industrial complex of Russia]. Sovremennye problemy razvitiya melioratsii i puti ikh resheniya (Kostyakovskie chteniya): materialy mezhdunarodnoy nauchno-prakticheskoy konferentsii [Current Problems of Land Reclamation Development and Ways to Solve Them (Kostyakov Readings): Proc. of the International Scientific-Practical Conference]. Moscow, vol. 2, pp. 6-11, DOI: 10.37738/VNIIGiM.2020.46.89.002. (In Russian).

2. Motornaya L.V., Khadzhidi A.E., 2022. Ratsional'noe vodopol'zovanie i ekologicheskaya bezopasnost' orositel'nykh sistem [Rational water use and envionmental protection safety of irrigation systems]. Mezhdunarodnyy sel'skokhozyaystvennyy zhurnal [International Agricultural Journal], no. 2(386), pp. 161-164, DOI: 10.55186/25876740_2022_65_2_161. (In Russian).

3. Kozhenko N.V., Safronova T.I., Degtyarev G.V., 2019. Teoreticheskaya model' protsessa snizheniya tseny namechaemykh meropriyatiy po vodoobespechennosti risovogo cheka [Theoretical model of cost decline process of the planned measures on providing rice field with water]. Uspekhi sovremennogo estestvoznaniya [Advances in Current Natural Sciences], no. 3, pp. 19-24. (In Russian).

4. Olgarenko V.I., Khashirova T.Y., Kozhenko N.V., 2020. Assessment of the damage impact to particular water structures on their performance. IOP Conference Series: Materials Science and Engineering, vol. 913, no. 2, 022054, DOI: 10.1088/1757-899X/913/2/022054.

5. Degtyarev G.V., Bakhtamyan N.A., 2020. The water structures’ operability analysis, taking into account damage and certain negative factors. IOP Conference Series: Materials Science and Engineering, vol. 913, no. 2, 022053, DOI: 10.1088/1757-899X/913/2/022053.

6. Lamerdonov Z.G., Khashirova T.Yu., Zhaboev S.A., Shogenov A.A., Lamerdonov K.Z., 2021. Resource-saving technologies and some proposals for the creation of automated reclamation systems. Ecology and Industry of Russia, vol. 25(7), pp. 8-12.

7. Kozhenko N.V., Degtyarev G.V., 2015. Stabilizator raskhoda vody [Water Flow Stabilizer]. Patent RF, no. 2559680. (In Russian).

8. Degtyarev V.G., Degtyareva O.G., Kozhenko N.V., Degtyarev G.V., 2020. Shov-vodovypusk deformatsionnyy [Expansion Seam-Water Outlet]. Patent RF, no. 2726888. (In Russian).

9. Degtyarev G.V., Kozhenko N.V., 2014. Issledovanie raskhodnykh kharakteristik reguliruyushchego organa lentochnogo regulyatora raskhoda vody metodom planirovaniya eksperimenta [Study of the flow characteristics of the regulator of a tape water flow regulator by the method of experiment planning]. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta [Proc. of Scientific Journal of Kuban State Agrarian University], no. 46, pp. 212-218. (In Russian).

10. Khashirova T.Yu., Lamerdonov Z.G., Zhaboev S.A., Enaldieva M.A., Tkhabisimova M.M., Lamerdonov K.Z., 2019. Informatsionnye tekhnologii i matematicheskoe modelirovanie pri proektirovanii beregozashchitnykh sooruzheniy [Information technologies and mathematical modeling in solving environmental problems in the design of shore protection structures]. Ekologiya i promyshlennost' Rossii [Ecology and Industry of Russia], vol. 23, no. 9, pp. 13-17, DOI: 10.18412/1816-0395-2019-9-13-17. (In Russian).

11. Degtyareva O.G., Vasiliev S.M., 2021. [Computer modelling and stress-strain analyses of the seasonal storage dam foundation]. Nauchnyy zhurnal Rossiyskogo NII problem melioratsii, vol. 11, no. 2, pp. 92-110, available: http:www.rosniipm-sm.ru/article?n=1198 [accessed 01.02.2023], DOI: 10.31774/2222-1816-2021-11-2-92-110. (In Russian).

12. Degtyareva O.G., 2016. Matematicheskiy analiz kontrforsnoy plotiny pri termicheskikh vozdeystviyakh kak chasti sistemy regulirovaniya stoka atmosfernykh osadkov [Mathematical analysis of the buttress dam under thermal impacts as part of the precipitation flow regulation system]. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta [Proc. of Scientific Journal of Kuban State Agrarian University], no. 62, pp. 165-171. (In Russian).

13. Degtyarev G.V., Degtyarev V.G., Degtyareva O.G., Kozhenko N.V., Dats’o D.A., 2018. Modelirovanie i raschet zhelezobetonnykh konstruktsii zdaniya v programmnom komplekse STARK ES [Modeling and Calculation of Reinforced Concrete Structures of a Building in the STARK ES Software Package: textbook]. Krasnodar, KubGAU, 188 p. (In Russian).

14. Degtyarev G.V., Dats’o D.A., 2019. The seasonal regulation basin dam basis deformation forecast. IOP Conference Series: Materials Science and Engineering, vol. 698, no. 2, 022013, DOI: 10.1088/1757-899X/698/2/022013.

15. Degtyarev G.V., Molotkov G.S., Sekisov A.N., Datsjo D.А., 2018. Numerical modeling of condition of the bridge structure based on the results of national surveys. International Journal of Engineering and Technology (UAE), vol. 7, no. 2.13, spec. iss. 13, pp. 226-230, https:doi.org/10.14419/ijet.v7i2.13.11866.

16. Abdrazakov F.K., Degtyarev V.G., Degtyarev G.V., 2022. Tsifrovoe modelirovanie i analiz peremeshcheniya osnovaniya gidromeliorativnoy plotiny v perspektivnoy tekhnologii formirovaniya resursov vody [Digital modeling and analysis of the movement of the foundation of a hydro-reclamation dam in a promising technology for the formation of water resources]. Agrarnyy nauchnyy zhurnal [The Agrarian Scientific Journal], no. 6, pp. 82-87, DOI: 10.28983/asj.y2022i6pp82-87. (In Russian).

17. Abdrazakov F.K., Pankova T.A., Shcherbakov V.A., 2016. Faktory, vliyayushchie na ekspluatatsionnoe sostoyanie gidrotekhnicheskikh sooruzheniy [Factors affecting the operational condition of hydraulic structures]. Agrarnyy nauchnyy zhurnal [The Agrarian Scientific Journal], no. 10, pp. 56-61. (In Russian).

18. Khashirova T.Y., Olgarenko I.V., Kozhenko N.V., 2020. The influence analysis of the structures and applied software systems’ soil foundations design models. IOP Conference Series: Materials Science and Engineering, vol. 913, no. 2, 022050, DOI: 10.1088/1757-899X/913/2/022050.

19. Degtyarev G.V., Abdrazakov F.K., Lavrov N.P., 2020. Assessment of the hydraulic structures’ technical condition by means of the amplitude-frequency characteristics’ analysis. IOP Conference Series: Materials Science and Engineering, vol. 913, no. 2, 022056, DOI: 10.1088/1757-899X/913/2/022056.

20. Abdrazakov F.K., Degtyarev V.G., Kozhenko N.V., 2021. Analiz osnovaniya meliorativnoy plotiny pri rabote v naporno-peremennom rezhime [Analysis of the base of a reclamation dam when operating in a pressure variable mode]. Agrarnyy nauchnyy zhurnal [Agrarian Scientific Journal], no. 8, pp. 82-86, https:doi.org/10.28983/asj.y2021i8pp82-86. (In Russian).

21. Bandurin M.A., 2013. [Improving the methods of carrying out operational monitoring and determining residual life of water conveyance structures]. Nauchnyy zhurnal Rossiyskogo NII problem melioratsii, no. 1(09), pp. 68-79, available: http:www.rosniipm-sm.ru/article?n=625 [accessed 01.02.2023]. (In Russian).

22. Vasiliev S., Slabunov V., Voevodin O., Slabunova A., 2020. Development of a decision support system at the stages of pre-design studies and design of irrigation systems based on IDEF0 functional modelling methodology. Irrigation and Drainage, vol. 69, no. 4, pp. 546-558, DOI: 10.1002/ird.2434.

23. Saida S.K., 2012. Prochnost' izgibaemykh zhelezobetonnykh secheniy bez predvaritel'nogo napryazheniya [Strength of bent reinforced concrete sections without prestress]. Mezhdunarodnyy zhurnal eksperimental'nogo obrazovaniya [International Journal of Experimental Education], no. 11, pp. 37-38. (In Russian).

24. Degtyarev G.V., Al Khadzhal A.S., 2022. [Investigation by digital technologies of the transverse force in a reinforced concrete roof beam reinforced with a channel]. Inzhenernyy vestnik Dona, no. 8(92), pp. 207-218, available: ivdon.ru/ru/magazine/archive/n8y2022/7843 [accessed 01.02.2023]. (In Russian).

25. Degtyarev G.V., Safronova T.I., Goldman R.B., Degtyareva O.G., 2019. [Computational modeling of bridge crossing state in intrafarm of reclamation system]. Nauchnyy zhurnal Rossiyskogo NII problem melioratsii, no. 2(34), pp. 85-103, available: http:www.rosniipm-sm.ru/article?n=972 [accessed 01.02.2023], DOI: 10.31774/2222-1816-2019-2-85-103. (In Russian).

26. Degtyareva O.G., Vasiliev S.M., 2021. [The use of deep-laid pits when using precipitation runoff for irrigation in the mountain piedmont zone]. Melioratsiya i gidrotekhnika, vol. 11, no. 3, pp. 78-94, available: http:www.rosniipm-sm.ru/article?n=1215 [accessed 01.02.2023], DOI: 10.31774/2712-9357-2021-11-3-78-94. (In Russian).

Download