GULLY MODELING FOR FOREST RECLAMATION PURPOSES
- Land Reclamation, Recultivation, and Land Protection
Purpose: analysis of the bank protection structures operation with substantiation of soil-reinforced and soil-filled structures use for the conditions of small rivers and watercourses of hydrographic network.
Materials and methods. New technical solutions and technologies for the construction of shell soil-filled and soil-reinforced structures, which provide a minimum impact on the catchment area of small rivers are proposed. The soil-filled shells filled with bottom sediments are proposed as the base of bank protection structures.
Results. Analytical and numerical methods for determining the stress-strain state are given, taking into account the properties of geosynthetic shell material of a soil-filled structure in the software module Ansys Mechanical APDL, on the basis of which a simulation model of a new technical and technological solution of a bank protection structure is developed, which allows to reduce scope of work in preparing and developing the foundation. The use of laboratory equipment for physical modeling of bank protection soil-reinforced structures on a soil-filled foundation, including an installation for testing composite materials of a soil-filled shell and the stress-strain state of a soil-reinforced massif is considered.
Conclusions. The planned research will make it possible to develop a technology of bank protection structures construction, both in cluttered urban environment and on the territory of environmental facilities. Based on the results of numerical modeling of soil-filled shells with the application of geotubes, the conditions for their stability as the foundation of a bank protection soil-reinforced structure were preliminarily determined. It is proposed to use a sheet pile wall at slopes of bedrock more than 10° to ensure the stability of the base shell. Laboratory stands to test the soil-filled shell-bases and the front wall of the bank protection structure have been developed.
doi: 10.31774/2712-9357-2021-11-4-316-331
soil-filled structure, bank protection structure, simulation model, soil-filled shells, small watercourse
Kasharin D. V. Substantiation of soil-reinforced and soil-filled structures of bank protection structures for the conditions of small rivers // Land Reclamation and Hydraulic Engineering [Electronic resource]. 2021. Vol. 11, no 4. P. 316–331. URL: http:www.rosniipm-sm.ru/en/article?n=1252 (date of access: 22.11.2021). DOI: 10.31774/2712-9357-2021-11-4-316-331.
1. Prokopov A.Yu., Lebidko V.A., 2015. Vybor i obosnovanie metodov beregoukrepleniya (na primere r. Kuban' v g. Krasnodare) [Selection and substantiation of bank protection methods (on the example of the Kuban River in Krasnodar)]. Izvestiya Rostovskogo gosudarstvennogo stroitel'nogo universiteta [Bulletin of Rostov State University of Civil Engineering], vol. 2, no. 20, pp. 41-48. (In Russian).
2. Mikhasek A.A., Smyvalov A.A., 2015. Osnovy vybora konstruktsii beregoukreple-niya iz kompozitnykh materialov [Fundamentals of choosing the composite material design for bank reinforcement]. Nauchnoe obozrenie [Scientific Review], no. 14, pp. 102-108. (In Russian).
3. Yarkin V.V., Kukhar A.V., 2018. Sravnitel'nyy analiz resheniy po beregoukrepleniyu poberezh'ya Azovskogo morya vertikal'nymi stenkami iz zaankerennogo shpunta razlichnoy konstruktsii [Comparative analysis of solutions for protection of the coast of the Azov Sea by anchored vertical walls of sheet pile of various design]. Metallicheskie konstruktsii [Metal Constructions], vol. 24, no. 4, pp. 157-166. (In Russian).
4. Zabara A.I., 2015. Beregoukreplenie Sakhalina ili nadezhen li bereg ostrova [Coast protection of Sakhalin or whether the coast of the island is reliable]. Ekologicheskiy vestnik Rossii [Ecological Bulletin of Russia], no. 3, pp. 36-38. (In Russian).
5. Kasharin D.V., 2018. Obosnovanie vozvedeniya osnovaniy gruntoarmirovannykh beregozashchitnykh sooruzheniy dlya usloviy malykh vodotokov [Substantiation of the construction of foundations of soil-reinforced coastal protection structures for the conditions of small watercourses]. Mekhanika gruntov v geotekhnike i fundamentostroenii: materialy mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Soil Mechanics in Geotechnics and Foundation Engineering: Proc. of the International Scientific and Technical Conference]. Novocherkassk, pp. 663-671. (In Russian).
6. Kurbanov S.O., Sozaev A.A., 2016. [Problems of engineering protection and environmental protection of costal urban zones of small rivers in the South of Russia]. Nauchnyy zhurnal KubGAU: politematicheskiy setevoy elektronnyy zhurnal, no. 118(04), pp. 916-936, available: http: ej.kubagro.ru/2016/04/pdf/55.pdf [accessed 01.10.2021]. (In Russian).
7. Kasharin D.V., 2011. Metody rascheta gruntoarmirovannykh flyutbetov mobil'nykh sooruzheniy na slabykh gruntakh [Method for calculating soil-reinforced flood beds for mobile structures on soft soils]. Izvestiya Vserossiyskogo nauchno-issledovatel'skogo instituta gidrotekhniki im. B. E. Vedeneeva [Bulletin of the All-Russian Scientific Research Institute of Hydraulic Engineering by B.E. Vedeneev], vol. 264, pp. 43-55. (In Russian).
8. Kasharin D.V., 2012. Zashchitnye inzhenernye sooruzheniya iz kompozitnykh materialov v vodokhozyaystvennom stroitel'stve: monografiya [Protective Engineering Structures from Composite Materials in Water Management: monograph]. Novocherkassk, YRSTU (NPI), 343 p. (In Russian).
9. Oliveira L., Viana P., Santos D., Reis E., 2016. Uso de geossintéticos como reforço em estradas não pavimentadas. Journal of the Brazilian Association of Agricultural Engineering, vol. 36, no. 3, pp. 546-557, http:dx.doi.org/10.1590/1809-4430-Eng.Agric.v36n3p546-557/2016. (In Portuguese).
10. Guo W., Chu J., Yan S., 2014. Analytical and numerical studies of geosynthetic tubes resting on deformable foundations. Geotechnical Special Publication, 2(238), pp. 503-514, DOI: 10.1061/9780784413401.050.
11. Yanin E.P., 2002. Tekhnogennye rechnye ily v zone vliyaniya promyshlennogo goroda (formirovanie, sostav, geokhimicheskie osobennosti) [Technogenic River Silts in the Zone of Industrial City Influence (Formation, Composition, Geochemical Features)]. Moscow, IMGRE Publ., 100 p. (In Russian).
12. Sakharova S.I., 1990. Armirovannye gruntovye podushki kak osnovaniya gidrotekhnicheskikh sooruzheniy meliorativnykh sistem v torfakh [Reinforced Ground Pads as Bases of Hydraulic Engineering Structures for Reclamation Systems in Peat]. Moscow, Moscow Irrigation and Drainage Institute, 290 p. (In Russian).
13. Kasharin D.V., Kalmykov S.A., Plotnikova V.A., 2018. Beregozashchitnoe sooruzhenie s primeneniem gruntoarmirovannykh i gruntonapolnyaemykh obolochek [Bank Protection Structure Using Soil-Reinforced and Soil-Filled Shells]. Patent RF, no. 2714732. (In Russian).
14. Khuberyan K.M., 1987. Osnovy rascheta myagkikh obolochek i plastin pri pomoshchi smeshannogo variatsionno-sterzhnevogo metoda. Statika i dinamika gibkikh sistem [Fundamentals of Computation of Soft Shells and Plates Using a Mixed Variational-rod Method. Statics and Dynamics of Flexible Systems]. Moscow, Stroyizdat Publ., 246 p. (In Russian).
15. Loginova I., Artamonova D., Stolyarov O., 2016. Relationship between structure and viscoelastic properties of geosynthetics. MATEC Web of Conferences, 53(01), 01015, DOI: 10.1051/matecconf/20165301015.
16. Vasiluta P., Cofaru N., Cofaru I.I., 2017. Studies on predictive virtual models based on finite element analysis of the behaviour of geomembranes. MATEC Web of Conferences, 137(18), 06006, DOI: 10.1051/matecconf/201713706006.
17. Bhandari A., Han J., 2018. Two-dimensional physical modelling of soil displacements above trapdoors. Geotechnical Research, no. 5(2), pp. 68-80, https:doi.org/10.1680/jgere.18.00002.
18. Hasan M., Samadhiya N.K., 2016. Experimental and numerical analysis of geosynthetic-reinforced floating granular piles in soft clays. International Journal of Geosynthetics and Ground Engineering, no. 2(3), article number: 22, https:doi.org/10.1007/s40891-016-0062-6.
19. Bacas B.M., Cañizal J., Konietzky H., 2015. Frictional behaviour of three critical geosynthetic interfaces. Geosynthetics International, vol. 22, no. 5, pp. 355-365, https:doi.org/10.1680/jgein.15.00017.
20. Tajabadipour M., Marandi M., 2017. Effect of rubber tire chips-sand mixtures on performance of geosynthetic reinforced earth walls. Periodica Polytechnica Civil Engineering, vol. 61, pp. 322-334, https:doi.org/10.3311/PPci.9539.
21. Abd A., Utili S., 2017. Design of geosynthetic-reinforced slopes in cohesive backfills. Geotextiles and Geomembranes, no. 45(6), pp. 627-641, https:doi.org/10.1016/j.geotexmem.2017.08.004.
22. Kim M., Filz G.M., Plaut R.H., 2005. Two-chambered water-filled geomembrane tubes used as water barriers: experiments and analysis. Geosynthetics International, vol. 12, no. 3, pp. 127-133, https:doi.org/10.1680/gein.2005.12.3.127.