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Аннотация. Цель: разработка автоматизированного метода оценки водной эро-
зии почв виноградников на основе спектральных индексов спутниковых снимков для 
оптимизации почвозащитных мер. Материалы и методы. Для оценки потерь почвы 
применены четыре модели: RUSLE, ORUSCAL, индексная модель и полевые измерения. 
Индексная модель реализована в среде Google Earth Engine и включает расчет нормали-
зованных спектральных индексов NDVI, BSI и эмпирического индекса эрозии (ELI).  
Автоматизированное выявление эрозионных форм выполнено с помощью машинного 
обучения (Random Forest) на основе обучающей выборки из 256 снимков и 1200 разме-
ченных участков. Потери почвы (т/га/год) определяются по шкале от 10 до 74, нормали-
зованной по средним значениям полевых измерений. Учет схемы посадки (вдоль/поперек 
склона) реализован через понижающий коэффициент (0,85). Результаты. Выявлены 
ключевые факторы водной эрозии: топография склонов (уклоны 5–10°), почвенные харак-
теристики (снижение гумуса ниже 2 %) и климатические условия (интенсивные ливни). 
Разработана адаптированная методика, включающая динамический C-фактор и учет аг-
ротехнических особенностей (схема посадки, возраст кустов). Для снижения эрозии 
предложены меры: расположение рядов поперек склона (> 5°), террасирование и мони-
торинг с использованием Sentinel-2. Наибольшую точность показала индексная модель 
(28,8 т/га/год), тогда как классическая RUSLE (44,5 т/га/год) и ORUSCAL (59,3 т/га/год) 
демонстрировали завышенные значения из-за ограничений в расчете C-фактора.  
Интеграция спутниковых данных и машинного обучения позволила автоматизировать 
распознавание типа эрозии (линейная, плоскостная, нет эрозии) с точностью 89 %. 
Выводы. Исследование подтверждает эффективность сочетания дистанционного мо-
ниторинга с адаптированными моделями, что сокращает прогнозные потери почвы на 
30–50 %. Методика позволяет сократить трудовые и финансовые затраты на полевые 
исследования, оперативно выявлять участки с высоким эрозионным риском. 
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Abstract. Purpose: to develop an automated method for assessing water erosion of 

vineyard soils based on spectral indices of satellite images for the optimization of soil conser-

vation measures. Materials and methods. Four models: RUSLE, ORUSCAL, an index mod-

el, and field measurements were used to assess soil loss. The index model is implemented in 

the Google Earth Engine environment and includes the calculation of normalized spectral in-

dices NDVI, BSI, and the empirical erosion index (ELI). Automated detection of erosion forms 

was performed using machine learning (Random Forest) based on a training set of 256 images 

and 1200 marked plots. Soil loss (t/ha/year) is determined on a scale from 10 to 74, normal-

ized by the average values of field measurements. The planting pattern (along/across the slope) 

is implemented through a reduction coefficient (0.85). Results. Key factors of water erosion: 

slope topography (slopes of 5–10°), soil characteristics (humus content below 2 %), and cli-

matic conditions (heavy rainfall) were identified. An adapted methodology incorporating a 

dynamic C-factor and agronomic features (planting pattern, bush age) consideration was de-

veloped. The following measures were proposed to reduce erosion: placing rows across the 

slope (> 5°), terracing, and monitoring using Sentinel-2. The index model demonstrated the 

highest accuracy (28.8 t/ha/year), while the classical RUSLE (44.5 t/ha/year) and ORUSCAL 

(59.3 t/ha/year) showed overestimated values due to limitations in the calculation of the  

C-factor. The integration of satellite data and machine learning made it possible to automate 

the recognition of erosion types (linear, sheet, no erosion) with an accuracy of 89 %. Conclu-

sions. The study confirms the effectiveness of combining remote sensing with adapted models, 

which reduces predicted soil loss by 30–50 %. This method reduces labor and financial costs 

for field research and the prompt identification of areas with a high erosion risk. 

Keywords: water erosion, vineyards, Sentinel-2, RUSLE, ORUS-CAL, GEE (Google 

Earth Engine), spectral indices, GIS, digital terrain model 
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Введение. Проблеме изучения эрозии почв на виноградниках в юж-

ных регионах России на протяжении многих лет уделяется повышенное 
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внимание. В Краснодарском крае, где значительные территории заняты 

виноградными насаждениями, проблема эрозии почв приобретает особую 

остроту. Длительное возделывание виноградников приводит к ухудшению 

структурного состояния почвы, развитию водной и ветровой эрозий.  

Эрозионные процессы ведут к снижению плодородия почв, ухудшению их 

структуры: увеличивается каменистость, возрастает содержание активных 

карбонатов, уменьшается мощность гумусового слоя [1, 2]. В связи с этим 

изучение и разработка методов мониторинга эрозии почвы являются важ-

ной задачей промышленного виноградарства. В России, как и во других 

странах с промышленным виноградарством, развивают исследования, 

направленные на изучение эрозионных процессов с использованием тех-

нологий дистанционного зондирования Земли (ДЗЗ) и геоинформационных 

систем (ГИС). Цифровые методы работы с большими объемами данных 

позволяют не только оценить текущее состояние почвенного покрова, но 

и прогнозировать развитие эрозионных процессов на основе ГИС-анализа 

рельефа, климатических условий и антропогенной нагрузки. Водная эрозия 

приводит к снижению содержания гумуса и глинистых фракций в почве, 

что влияет на ее спектральные характеристики и позволяет использовать 

мультиспектральные данные дистанционного зондирования для распозна-

вания эродированных участков и оценки степени их деградации [3]. В усло-

виях предгорий Кавказа виноградники расположены на участках между 

горами с уклонами от пологих (2–3°) до покатых (3–5°) и крутых (5–10°). 

Почвенный покров исследованных участков представлен в основном чер-

ноземами южными. Установлено, что эрозия почвы наблюдается на всех 

участках, но в большей мере на участках с покатыми и крутыми склонами, 

где смыто до 20 % почвы, а в нижней части склона наблюдается аккумуля-

ция наносов до 30 % [4]. Эрозия и смыв гумуса варьируют в зависимости 

от уклонов поверхности почвы и географического расположения рядов  

виноградников. 
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Важным направлением исследований является также оценка эрози-

онного потенциала территорий с использованием методов моделирования, 

таких, как RUSLE (Revised Universal Soil Loss Equation). Он позволяет мо-

делировать сценарии эрозии на основе изменений в режиме выпадения 

осадков, методах обработки почвы, свойствах почвы и растительном по-

крове. Учеными КубГАУ на основе ГИС-технологий, ДДЗ методами RUSLE 

была проведена оценка эрозии в Кубанском гидрографическом бассейне, 

выявлены районы с наиболее высокими значениями потерь почвы, кото-

рую оценили в 18,1 т/га/год [5]. Развиваются подходы к оценке эрозионной 

опасности агроландшафтов с использованием геоинформационного моде-

лирования, которые учитывают уклоны местности, экспозицию склонов, 

что позволяет более точно выделить эрозионно опасные территории [6]. 

Водная эрозия почвы представляет собой серьезную проблему для вино-

градарства, особенно в регионах с холмистым рельефом и интенсивными 

осадками. Виноградники часто подвергаются значительным потерям поч-

вы из-за крутизны склонов, частых обработок и агротехнических методов, 

которые способствуют разуплотнению поверхностного слоя. Средняя ско-

рость эрозии на виноградниках, измеренная с помощью водосборных пло-

щадок, может достигать 77,6 г/м2·ч и составляет 2,4 т/га за один конкрет-

ный дождевой/орошаемый период, а средние совокупные потери почвы от 

всех типов эрозии составляют до 9,3 т/га/год [7, 8]. В условиях изменения 

климата, когда наблюдаются увеличение частоты экстремальных осадков и 

продолжительных засух, риск деградации почвы усиливается. Средняя по-

теря почвы на виноградниках, растущих на разных типах почв, может со-

ставлять и более 9,8 т/га/год [9]. Средняя скорость эрозии почв в Европей-

ском Союзе (ЕС) оценивается в 2,45 т/га/год. Примерно на 25 % террито-

рии ЕС скорость эрозии превышает рекомендуемый устойчивый порог 

(2 т/га/год), а более 6 % сельскохозяйственных земель страдают от сильной 

эрозии (11 т/га/год) [10]. Виноградники часто располагаются на склонах, 
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что усиливает риски водной эрозии из-за стока осадков. На виноградниках 

в Италии скорость эрозии может достигать значения 44 т/га/год, что значи-

тельно превышает максимальный порог эрозии почвы, установленный 

в ЕС в размере 1,4 т/га/год [11]. 

Технологии дистанционного зондирования, ГИС и методы машинно-

го обучения позволяют значительно улучшить оценку факторов эрозии. 

Например, использование спутниковых снимков высокого разрешения и 

вегетационных индексов (NDVI) для определения растительного покрова 

(C-фактор) демонстрирует высокую эффективность в полузасушливых и 

горных регионах [12, 13]. Кроме того, методы фотограмметрии и лазерного 

сканирования (LiDAR) обеспечивают детальное изучение процессов поч-

венной эрозии [14], но необходимо дальнейшее совершенствование подхо-

дов при моделировании почвенной эрозии на виноградниках [15]. 

С помощью спектральных индексов NDVI (Normalized Difference 

Vegetation) Index, BSI (Bare Soil Index), NDWI (Normalized Difference Water 

Index), TPI (Topographic Position Index), ELI (Erosion Load Index) выявляют 

участки с повышенной эрозионной деградацией [16]. BSI позволяет иден-

тифицировать открытую почву и признаки плоскостной эрозии, например, 

при значении BSI > 0,2 – участок с высокой вероятностью эрозии, а при 

значении < 0,1 определяет наличие растительного покрова [17]. В компози-

ции с NDVI BSI помогает оценить густоту растительности, что важно при 

определении устойчивости почвы к водной эрозии. Участки с NDVI < 0,3 

характеризуются слабой растительностью и соответственно повышенным 

риском эрозии. NDWI используется для оценки влажности почвы, что так-

же влияет на эрозионные процессы. Значения NDWI < 0,1 указывают на 

низкую влажность и повышенный риск эрозии. TPI помогает выделить 

овраги и промоины. Значения TPI > 0,1 характерны для линейных форм ре-

льефа, подверженных эрозии. Высокие значения ELI (> 1,5) указывают на 

cильную эрозионную нагрузку, на низкий растительный покров (NDVI < 0,2), 
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высокую долю открытой почвы, а низкие значения ELI (< 0,5) характерны 

для участков с хорошим растительным покровом и стабильными почвен-

ными условиями [18]. Использование цифровых моделей рельефа и дан-

ных о почвенном составе позволяет повысить точность прогнозирования 

зон эрозионного риска. В последние годы особое внимание уделяется раз-

работке интегрированных моделей, комбинирующих спутниковые данные 

и наземные измерения. Геоинформационные системы (ГИС) в сочетании 

с методами машинного обучения позволяют автоматизировать процесс 

картирования эрозионных участков, что снижает затраты на полевые ис-

следования и повышает оперативность оценки. Линейная и плоскостная 

водная эрозия особенно характерна для виноградников на склонах и в рай-

онах с неравномерным распределением осадков. Для оценки и прогнозиро-

вания водной эрозии почвы широко применяется модель «Универсальное 

уравнение потери почвы» (RUSLE) и его модификации. Эта модель учиты-

вает факторы эрозии, включая интенсивность осадков (R-фактор), эроди-

рованность почв (K-фактор), длину и уклон склона (LS-фактор), методы 

управления растительным почвенным покровом (C-фактор) и меры по сохра-

нению почвы (P-фактор). Однако их точность во многом зависит от качества 

входных данных и методов калибровки [19]. Современные ГИС-модели вод-

ной эрозии, такие, как SAGA GIS, QGIS и GEE, позволяют проводить ком-

плексный анализ эрозионных процессов на основе пространственных дан-

ных и модели. Использование ГИС-подходов позволяет создавать карты 

риска эрозии почвы, выявлять наиболее уязвимые участки и разрабатывать 

методы их защиты. Включение данных о рельефе, почвенных характери-

стиках и спектральных индексах значительно увеличивает точность оценки 

и прогнозирования эрозионных процессов. В последние годы особое внима-

ние уделяется разработке интегрированных моделей, комбинирующих 

спутниковые данные и наземные измерения. Например, метод SUM (Surface 

Uncovering Method), используемый для оценки эрозии на виноградниках, 
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был усовершенствован в метод ISUM (Improved Surface Uncovering Method), 

что позволило повысить точность измерений на 14,2–37,8 % [20]. Совре-

менные модели, таки, как RUSLE и WEPP (Water Erosion Prediction Project), 

позволяют учитывать топографические особенности, почвенные характе-

ристики и агротехнические практики для прогноза потерь почвы в резуль-

тате эрозии. 

Цель исследования – разработка автоматизированного метода оценки 

водной эрозии почв виноградников на основе спектральных индексов 

спутниковых снимков для оптимизации почвозащитных мер. 

Задачи исследования. 

1 Изучить цифровые данные топографии (уклон, экспозиция скло-

нов), почвенных характеристик (тип, содержание гумуса) и климатических 

условий в моделировании эрозионных процессов. 

2 Модифицировать классические модели (RUSLE, ORUSCAL) с уче-

том специфики виноградников (схема посадки, возраст насаждений). 

3 Разработать модель на основе комбинации спектральных индексов 

(NDVI, BSI, ELI). 

4 Сравнить точность моделей (RUSLE, ORUSCAL, индексная) с по-

левыми данными. Оценить расхождение результатов и выявить оптималь-

ный метод для условий виноградников. 

Материалы и методы. Исследование проводилось на виноградни-

ках Краснодарского края (участки у п. Веселовка, Темрюкского района) 

с использованием данных дистанционного зондирования Sentinel-2 за пе-

риод 2021–2024 гг. Для оценки эрозионных процессов применялись моде-

ли: RUSLE (Universal Soil Loss Equation) – стандартная эмпирическая мо-

дель и ORUSCAL (Orchard RUSle CALibration) с калибровкой коэффици-

ентов RUSLE по спутниковым данным о виноградниках, выращиваемых на 

склонах с постоянным уклоном. Для определения участков виноградников 

с наиболее вероятным формированием эрозионных борозд при высокой 
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интенсивности дождя мультиспектральные растровые изображения груп-

пировались с цифровой моделью местности (ЦММ). GEE (Google Earth 

Engine) использовалась как основная среда моделирования и анализа эро-

зионных потерь почвы. В качестве источника использованы открытые 

данные цифровых коллекций и библиотек (таблица 1). 

Таблица 1 – Открытые данные цифровых коллекций и библиотек 

Table 1 – Open data from digital collections and libraries 

Наименование 

источника 

Тип  

данных 
Назначение в модели Ссылка 

Sentinel-2 SR 

(HARMONIZED) 

Спектраль-

ные спутни-

ковые ссыл-

ки 

Расчет индексов (NDVI, 

NDWI, BSI, ELI), по-

строение индексной мо-

дели эрозии, классифи-

кация эрозионных форм 

https://developers.google.co

m/earth-engine/datasets/ 

catalog/COPERNICUS_S2_

SR_HARMONIZED 

CHIRPS Daily 

Precipitation 

Климатиче-

ские данные 

(осадки) 

Расчет R-фактора для 

моделей RUSLE, ORUS-

CAL 

NASADEM HGT 

Цифровая 

модель ре-

льефа 

Расчет уклона и LS-

фактора (топографиче-

ского) 

OpenLandMap – 

Soil Texture 

Class 

Почвенные 

данные 

Расчет K-фактора (эро-

дируемость почвы) 

OpenLandMap – 

Organic Carbon 

Почвенные 

данные 

Уточнение K-фактора 

через содержание орга-

нического вещества 

HydroSHEDS 

Flow Accumula-

tion  

Гидрологи-

ческие дан-

ные 

Оценка накопления стока 

для моделей WATEM/ 

SEDEM 

Векторные гео-

метрии  

Локальные 

полиго-

нальные и 

линейные 

объекты 

Определение границ ви-

ноградника, обучение 

моделей по линейной и 

плоскостной эрозии 

Добавлены вручную по 

данным кадастра и поле-

вых исследований 

Дополнительно использовались текстурные признаки для классифи-

кации эрозии алгоритмом машинного обучения методом случайного леса 

(англ. Random Forest). Рассчитывалась плотность эрозионных линий (м/га) 

для оценки интенсивности процессов. Расчет различий между темпами 

эрозионно-аккумулятивных процессов проводился вычитанием растров 

поклеточного расчета потерь по сетке с ячейкой 100 × 100 м. Зоны смыва и 
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аккумуляции моделировали по интенсивности эрозионно-аккумулятивных 

процессов методом машинного обучения по мультиспектральным индексам. 

Точность автоматизированного выявления эрозионных форм была получена 

при решении задач бинарной классификации: эрозия есть/эрозии нет; распо-

знавание типа эрозии (линейная/плоскостная) на основе методов машинного 

обучения (Random Forest). Модель была обучена на 1200 размеченных 

участках и валидирована на отдельной тестовой выборке (30 % данных). 

Для оценки точности предсказания количественных почвенных потерь 

(в т/га/год) использовался коэффициент детерминации R2. 

Результаты и обсуждение. Проведенное исследование подтвердило 

высокую подверженность виноградников эрозионным процессам в услови-

ях холмистого рельефа. На участке 43 га (п. Веселовка, Темрюкский район) 

на спутниковом снимке высокого разрешения от 18.11.2021 визуально вы-

явлены эрозионные борозды общей протяженностью ~ 3179 м, средняя 

длина которых составляет 300 м. Линейная эрозия охватывает ~ 3,5 га, или 

14,8 % территории виноградника в основном на участках с уклонами 5–7° 

и южной экспозицией склонов (рисунок 1a). 

Для автоматизированного распознавания эрозионных форм методом 

машинного обучения разработан скрипт на основе обучающей выборки 

снимков Sentinel 2 c 2021 по 2024 г. При расчете динамического C-фактора, 

использовался комбинированный индекс из трех индексов – NDVI, BSI, 

ELI по формуле (1): 

 С-фактор =1 – NDVI · exp((ELI – BSI) / (BSI + ELI)), (1) 

где NDVI – индекс, который оценивает растительность; 

BSI – индекс, который оценивает оголенность почвы; 

ELI – индекс, который оценивает эрозионную нагрузку. 

Остальные индексы не оказали значимого влияния на вариативность 

C-фактора. В результате машинной обработки 256 снимков Sentinel-2 за 

четырехлетний период в автоматизированном режиме были выявлены 
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участки виноградника с линейными и плоскостными видами водной эрозии 

(рисунок 1b). С учетом высот и уклонов весь участок по сетке 100 × 100 м 

был классифицирован на зоны низкого, среднего и высокого эрозионного 

риска (рисунок 1c). 

 
a – эрозионные борозды, выделенные визуально по RGB космоснимку;  

b – программное распознавание плоскостной и линейной эрозии по спектральным 

индексам спутниковых снимков; c – классификация виноградника по зонам  

эрозионного риска: зеленый – низкий, оранжевый – средний, красный – высокий 

a – erosion furrows visually identified by an RGB satellite image; b – software recognition  

of sheet and rill erosion based on spectral indices of satellite images; c – vineyard 

classification by erosion risk zones: green – low, orange – medium, red – high 

Рисунок 1 – Эрозионные формы на виноградниках 

Figure 1 – Erosion patterns in vineyards 

Для классификации участков насаждения с эрозией использован ме-

тод машинного обучения Random Forest по обучающей выборке снимков 

с входными признаками: NDVI, BSI, ELI, буферизации эрозионных линий 

(2 м) и междурядья (шириной 9 м). Для учета агротехнических особенно-

стей виноградного насаждения введены два специализированных парамет-

ра. P-фактор (0,2–0,8) учитывает схему посадки: 0,2 – контурная посадка 

поперек склона, 0,8 – вдоль склона; AgeFactor (0,8–1,4) корректирует риск 

в зависимости от возраста кустов: 1,4 – молодые насаждения (1–3 года), 

1,0 – зрелые (4–15 лет), 0,8 – старые (> 15 лет). 
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В результате автоматизированного анализа многолетних данных ди-

станционного зондирования с использованием ГИС-моделирования ЦММ 

установлено, что ключевыми причинами эрозионных процессов на данном 

винограднике являются: склон 5–7° и его южная экспозиция (приводят к 

максимальной интенсивности смыва в 40,6 т/га и более); почвенные харак-

теристики (супесчаные черноземы теряют на 80 % больше материала, чем 

глинистые разновидности при одинаковом уклоне). Особенно критично 

снижение содержания гумуса ниже 2 %, что увеличивает эрозию на 40 %. 

Потеря органической и минеральной части почвы на винограднике 

была рассчитана по трем моделям: RUSLE, ORUSCAL, Index model и по 

данным полевых исследований (таблица 2). 

Таблица 2 – Потери органической и минеральной части почвы  

в результате эрозии 

Table 2 – Organic and mineral soil component losses due to erosion 

Модель 
Сред.  Мин. Макс. 

Стан-

дартное 

откло-

нение 

Сред. 

потери 

на кусто-

место 

(4,5 м2) 

Особенность 

т/га/год кг 

1 2 3 4 5 6 7 

RUSLE 44,5 9,2 87,0 19,4 20,0 

RUSLE = R · K · LS · C · P. 

Расчет факторов R (осадковая 

эрозионная энергия), K (эроди-

руемость почвы), LS (уклон и 

длина склона). Использование 

DEM (цифровой модели высот), 

использование NDVI для оценки 

растительности C-фактор и меры 

по сохранению почвы P-фактор 

ORUS-

CAL 
59,3 10,3 127,3 29,1 26,7 

Расширяет RUSLE за счет мо-

дификации C-фактор:  

C = (1 – NDVI) · (1 + Slope / 10). 

Более чувствительна к положе-

нию кустов на склонах 
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Продолжение таблицы 2 

Table 2 continued 

1 2 3 4 5 6 7 

Index_ 
model 

28,8 10,1 40,6 3,4 
8,6  

(4,6–22,5) 

Комбинация NDVI, BSI, ELI и 
композиции формул. 
Преобразуется в шкалу потерь: 
от 10 до 74 т/га/год. 
Преимущество – адаптивность 
под оптические признаки ого-
ленности и деградации. Чувстви-
тельна к структуре почвы и схе-
ме посадки 

Полевые 
расчеты 
потерь 

74,0 10 – – – 

Оценивает потери от линейной 
эрозии: по длине каналов, типу 
почвы, уклону, плотности почвы 
и геометрии промоин (ширина, 
глубина). 
Расчет массы и преобразование 
в т/га с учетом коэффициентов 

На основе репрезентативных полевых измерений эрозии на тестовых 

участках, охватывающих весь диапазон эрозионной активности (от мини-

мальной до максимальной), была установлена эмпирическая зависимость. 

Минимальное (10 т/га/год) и максимальное (74 т/га/год) значения потерь 

почвы, полученные в ходе полевых исследований, были использованы в 

качестве реперных точек для линейного преобразования по формуле (2): 

Потери_почвы (т/га/год) = MIN + (Index_Value – Index_Min) × 

 × (MAX – MIN) / (Index_Max – Index_Min)), (2) 

где MIN = 10 т/га/год и MAX = 74 т/га/год – минимальное и максимальное 

значения полевых измерений; 

Index_Value – расчетное значение индексной модели для конкретного 

пикселя; 

Index_Min, Index_Max – минимальное и максимальное значения ин-

дексной модели по всей территории исследования. 

Все промежуточные значения индекса линейно интерполируются 

в этом диапазоне. Данный подход позволяет «калибровать» модель под 

конкретные условия региона и переводит абстрактные цифры индекса в 

понятные и верифицируемые величины. 
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Проведенное сравнение четырех методов оценки эрозии почвы 

(RUSLE, ORUSCAL, Index_model и полевые расчеты) выявило существенные 

различия в их прогнозных способностях и точности. Наибольшие средние 

значения потерь почвы демонстрируют модели ORUSCAL (59,3 т/га/год) 

и RUSLE (44,5 т/га/год), что превышает показатель индексной модели 

(28,8 т/га/год) в 2,1 и 1,5 раза соответственно. Наибольший разброс значе-

ний наблюдается у модели ORUSCAL (от 10,3 до 127,3 т/га/год) с ампли-

тудой 117 т/га/год, что указывает на ее высокую чувствительность к ло-

кальным условиям. Индексная модель демонстрирует наименьший разброс 

значений (от 10,1 до 40,6 т/га/год) с амплитудой всего 30,5 т/га/год, что 

свидетельствует о ее стабильности и устойчивости прогнозов. Значения 

стандартного отклонения подтверждают высокую вариабельность моделей 

RUSLE (19,4 т/га/год) и ORUSCAL (29,1 т/га/год). Индексная модель ха-

рактеризуется минимальным стандартным отклонением (3,4 т/га/год), что в 

5,7–8,6 раза меньше, чем у других моделей, и подтверждает ее статистиче-

скую надежность. При пересчете на уровень отдельных кусто-мест (4,5 м2) 

индексная модель показывает средние потери 8,6 кг (диапазон 4,6–22,5 кг), 

что существенно ниже показателей RUSLE (20,0 кг) и ORUSCAL (26,7 кг). 

Это указывает на более дифференцированный подход индексной модели 

к учету локальных условий произрастания виноградных кустов. 

Эти значения позволяют понять, насколько каждая модель оценивает 

потери: например, ORUSCAL завышает, RUSLE ближе к индексу. Средняя 

абсолютная ошибка между моделями RUSLE/ORUSCAL имеет значение 

17,3 т/га/год относительно индексной. Среднеквадратичная ошибка со зна-

чением 21,8 т/га/год говорит о том, что есть участки, где модели показыва-

ют значительное расхождение. Графики рассеяния подтверждают высокую 

дисперсию значений в RUSLE/ORUSCAL относительно индексной модели. 

Зависимость потерь почвы от значений индекса NDVI (рисунок 2). Точеч-

ный график с регрессией: ось X – NDVI, ось Y – потери почвы (т/га/год).  
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Рисунок 2 – Рассеивание значений потерь почвы моделей в зависимости от значения индекса NDVI  

Figure 2 – Dispersion of soil loss values for models depending on the NDVI index value 
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Тренды: отрицательная корреляция для всех моделей (чем выше 

NDVI, тем ниже эрозия). ORUSCAL/Index model показывают резкий рост 

потерь при NDVI < 0,3, т. е. модель ORUSCAL, учитывающая экспозицию 

склонов, и Index model, учитывающая морфометрию линейной эрозии, 

чувствительны к оголенности почвы на уклонах > 5°. 

Автоматизированная идентификация и классификация по компози-

ции спектральных индексов самого факта и тип эрозии получены с точно-

стью в 89 %. Коэффициент детерминации (R2) точности предсказания объ-

ема почвенных потерь (в т/га/год) составил 0,65, и это означает, что ин-

дексная модель (Index model) объясняет 65 % вариативности в данных 

о потерях почвы. Данный результат был верифицирован путем сравнения 

предсказанных моделью значений с данными полевых измерений на клю-

чевых участках. Оставшиеся 35 % вариативности могут быть связаны с ло-

кальными факторами, не полностью учтенными в модели (например, мик-

рорельеф, агротехнические мероприятия). 

Большинство кусто-мест (51120) имеют потери почвы более чем 

10,0 кг/куст (> 22,2 т/га/год) и только 3729 кусто-мест виноградника имеют 

потери менее 10,0 кг/куст (рисунок 3). 

 

Рисунок 3 – Гистограмма распределения потерь почвы  

по количеству кусто-мест 

Figure 3 – Histogram of soil loss distribution by number of bush sites 
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Наиболее значимые расхождения были выявлены на участках с вы-

сокой плотностью промоин (от 75 до 400 м/га) и пониженным раститель-

ным индексом NDVI (< 0,3), что указывает на необходимость существен-

ной калибровки моделей RUSLE/ORUSCAL при оценке почвенной эрозии 

на виноградниках. Это может быть связано с тем, что классическая мо-

дель RUSLE не учитывает специфические особенности виноградников, 

такие, как направленность рядов, плотность кустов, а также фактическое 

распределение растительного покрова и возраст насаждения. Расхожде-

ния между моделями по потерям почвы на крутых склонах могут до-

стигать 80–100 т/га/год. Завышенные значения потерь почвы в моделях 

RUSLE, ORUSCAL получаются из-за C-фактора, который рассчитывается 

только с использованием индекса NDVI и может переоценивать влияние 

низких значений на оголенных участках, например, если NDVI ≈ 0,1–0,2, 

C-фактор получается близким к 1 вместо реальных 0,25–0,6. Это увеличи-

вает итоговые значения в 2–4 раза. Также завышать потери почвы может 

LS-фактор, особенно на крутых уклонах из-за значительной длины склона 

более 100 м (lambda = 300 м). P-фактор принимается равным 0,5, но его 

значение может быть и выше, если на участке обработка межрядных 

участков минимальная и используются покровные культуры. Для учета 

схемы посадки виноградного насаждения в формулу расчета потери почвы 

был добавлен поправочный коэффициент «plantingFactor», который умень-

шает потери на 15 % при посадке поперек склона. Индексная модель дает 

умеренные и устойчивые оценки потери почвы на винограднике, а ORUSCAL 

и RUSLE более вариативны, полевые замеры показывают фиксированное 

значение по всей площади из-за измерения только нескольких эрозионных 

промоин. Из-за разрешения спутникового снимка в 10 м в индексной мо-

дели невозможно учесть точечные размывы, для учета которых требуется 

дистанционная съемка с разрешением менее 1 м/пк. Новый метод расчета 

С-фактора в индексной модели гораздо более устойчив к фоновым NDVI, 
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особенно при низкой растительности, а также снижает переоценку потерь 

на светлых участках с высокой отражательной способностью, но низким 

ELI. Индексная модель показывает наилучшую устойчивость и согласо-

ванность, особенно в условиях пространственной гетерогенности вино-

градников. Полевые оценки, основанные на линейной эрозии, дают завы-

шенные значения, так как не отражают фоновые потери по всей площади. 

Индексная модель потерь почвы демонстрирует высокую адаптивность и 

реалистичность в условиях виноградников, особенно при недостатке ло-

кальных данных по осадкам и механическим свойствам почв. 

Для целей мониторинга рекомендуется использовать индексную мо-

дель как основную, дополняя ее ORUSCAL на участках с уклонами > 5° 

и южной экспозицией склона. Для склонов крутизной > 5° поперечная 

схема посадки с плотностью 3000–4000 кустов/га позволит снизить потери 

почвы на 56 %. На участках с LS-фактором > 2 необходимо террасирова-

ние или мульчирование. 

На основе анализа вариабельности и устойчивости прогнозов можно 

заключить, что индексная модель демонстрирует наилучшие статистиче-

ские характеристики с минимальным разбросом значений и стандартным 

отклонением. Модели RUSLE и ORUSCAL, несмотря на их широкое рас-

пространение, показывают значительно большую вариабельность резуль-

татов, что снижает их прогностическую ценность для виноградников. 

Выводы. Исследование подтвердило высокую эффективность соче-

тания дистанционного автоматизированного мониторинга с адаптирован-

ными моделями оценки эрозии. Индексная модель представляет собой но-

вый этап в мониторинге эрозии почвы виноградников, сочетая физическую 

обоснованность RUSLE, оперативность дистанционных методов, учет спе-

цифики виноградарства. Предложенная модель позволяет не только выяв-

лять критические участки, но и прогнозировать потери почвы при измене-

нии климатических условий. Внедрение рекомендаций может сократить 
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эрозионные потери почвы на 30–50 %, при минимальных затратах на за-

щитные мероприятия, что особенно важно для устойчивого развития вино-

градарства в регионе. Модель предсказывает рост эрозии на 20–30 % при 

увеличении интенсивности ливней. Модель адаптирована к условиям юга 

России и может служить основой для цифрового мониторинга эрозионных 

процессов на поверхности почвы виноградных насаждений. 
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